首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
磁性微球是一类新型的功能材料,在生物医学工程、细胞生物学和环境工程具有广泛的应用。本文从磁性微球的结构、特性和制备方法进行了探讨,并详细介绍了磁性微球在细胞分离、蛋白质以及核酸的制备纯化领域中的应用。  相似文献   

2.
磁性聚合物微球作为一种结构新颖的功能高分子材料,在生物医药以及其他众多领域具有非常广阔的应用前景.特别是随着生命科学的研究日益深入,以磁性聚合物微球为基础的快速有效的细胞和酶的分离以及靶向制剂等越来越受到人们的重视.本文从磁性聚合物微球的结构、常用制备方法及其在生物医药领域的应用等方面综述了近年来国内外磁性聚合物微球的最新研究进展.  相似文献   

3.
生物磁性高分子,微球制备研究与应用进展   总被引:3,自引:0,他引:3  
本文综述了磁性高分子微球的研究现状,并总结了目前常用的各种磁牲高分子微球的制备方法及其在生物医学上的应用。最后展望了磁性高分子微球的发展前景。  相似文献   

4.
磁性复合微球作为一种优良的载体,广泛应用于生物医学和技术上,如蛋白纯化、药物绑定、酶固定化等.磁性复合微球制备过程包括纳米磁性粒子合成、磁性复合微球制备,将酶与经表面戎基、氛基、环氧基等功能基团修饰或直接与磁性微球共价结合,或者与表面经金属离子鳌合的磁性微球吸附从而实现酶固定化.本文介绍了磁性复合微球的制备过程及其在固定化酶方面的研究进展.  相似文献   

5.
本研究旨在用壳聚糖-聚丙烯酸纳米磁性微球纯化血红细胞超氧化物歧化酶。采用了接枝共聚法,以K2S2O8为引发剂,使壳聚糖(CTS)与聚丙烯酸(PAA)进行自由接枝共聚合成含有两性基团(-NH3,-COOH)的壳聚糖-聚丙烯酸纳米微球。化学共沉淀法制备Fe3O4磁流体,以戊二醛为交联剂,制备壳聚糖-聚丙烯酸纳米磁性微球。用傅里叶变换红外光谱仪对磁性微球结构进行检测。JEM-4000EX电镜技术对微球粒径,形貌进行表征。SOD试剂盒测定各步骤Cu-ZnSOD酶活性。结果表明,壳聚糖-聚丙烯酸纳米磁性微球有较好的粒径分布、磁响应性及蛋白吸附特性。纯化后酶比活性达6 727 U/mg,产品得率21.1%,活性回收85.7%。壳聚糖-聚丙烯酸纳米磁性微球经血液纯化血红细胞SOD具有可再生性、易操作性,其纯化效果取决于金属Cu2+的螯合程度。  相似文献   

6.
用壳聚糖亲和磁性微球纯化血浆凝血酶的研究   总被引:1,自引:0,他引:1  
通过化学共沉淀法合成纳米粒子Fe3O4磁核,以壳聚糖为包裹材料包被自制的磁核,采用乳化交联法制备了具有核-壳结构的磁性高分子微球-壳聚糖磁性微球,并偶联肝素配基得到了一种新型亲和磁性微球,应用SEM、FT-IR、XRD等对微球的粒径、形貌、结构和磁响应性进行了表征.考察了该亲和磁性微球对凝血酶的分离纯化性能,并与传统的DEAE离子交换色谱法进行了比较.结果表明,所得亲和磁性微球具有较窄的粒径分布、形状规整,粒径在50nm左右.对凝血酶一步吸附纯化获得了比活为1879.71U/mg的酶,得率85%,纯化倍数11.057,而传统柱层析法得率为72%,纯化倍数仅为5.33.制备了壳聚糖亲和磁性微球,并将磁分离技术应用于凝血酶的分离纯化,得到了较好的效果,这将对于凝血酶的纯化及生产具有一定参考价值.  相似文献   

7.
用磁性微球载体固定化酶的研究   总被引:2,自引:0,他引:2  
含铁磁体的高分子微球,其表面可化学偶联酶,抗体、抗原等生物活性物质,从而增加生物质的稳定性和存活期,同时可用外部磁场快速简便地分离反应物,因此磁性微球载体已逐渐应用于细胞、蛋白质的分离、亲和层析和放射免疫等生化技术领域。许多酶反应是临床  相似文献   

8.
磁性顺铂微球的药物控释研究   总被引:1,自引:1,他引:0  
目的 :改善磁性顺铂微球的药突释和滞释 ,实现控释。方法 :用不同的工艺制备磁性顺铂微球并进行药物释放的体外、体内测定。结果 :当高分子基质材料中疏水性骨架材料 ,含有水解键的交联偶合材料 =7:3、搅拌速度 1 5 0 0r.min- 1 ,成型温度 2 0℃时 ,制备的磁性顺铂微球具有较好的控释特性。结论 :对开发磁性微球和导向治疗恶性肿瘤有一定意义。  相似文献   

9.
调磁对磁性微球在大鼠体内代谢速度影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用交变磁场引发分子振荡产生退磁效应的方法,研究了磁性微球在大鼠体内的代谢过程,结果表明,在300LX调磁条件下,能明显加速大鼠体内磁性微粒的代谢速度.可防止磁性微粒在体内蓄积过长造成对机体的损害.  相似文献   

10.
目的:建立及评价使用磁性纳米微球作为固相载体的人酌干扰素(Interferon-gamma,IFN-gamma)双抗体夹心酶联免疫吸附实验 (Enzyme-linked immunosorbent assay,ELISA)检测方法。方法:以杂化细乳液合成法制备磁性纳米微球,将其作为免疫检测的固相 载体。将磁性微球与IFN-酌抗体进行偶联,建立基于磁性微球的ELISA 检测方法,检测人IFN-gamma,绘制IFN-gamma标准曲线并进行方法 学评价。结果:获得包被有人IFN-gamma抗体的免疫微球, 抗体偶联率为54.5 %。用它建立IFN-gamma的双抗体夹心的ELISA 检测方法,检 测范围为0-1000 pg/mL,相关系数为0.9996,灵敏度23.2 pg/mL,功能灵敏度0 pg/mL,批内和批间变异系数(Coefficients of Variance,CVs)<8 %,检测总共需要2 小时。结论:成功制备了IFN-酌免疫微球并建立了定量检测人IFN-gamma的双抗体夹心磁珠 酶联免疫方法。  相似文献   

11.
Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1–3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2–1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2–1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.  相似文献   

12.
Differentiation of myoblasts is accelerated in culture in a magnetic field   总被引:1,自引:0,他引:1  
Summary We developed a new cell stimulation method in which magnetic microparticles (MPs) were introduced into the cytoplasm of cultured myoblasts and the cells were cultured in a magnetic field. The differentiation of myoblasts was examined from the viewpoint of their morphology and myogenin production. After exposure to the magnetic field, the cells containing MPs became larger and were elongated along the axis of the magnetic poles. Myogenin, a muscle-specific regulatory factor involved in controlling myogenesis, was formed earlier, and myotubes were seen earlier and more frequently in this group of myoblasts than in the other groups (cells alone without magnetic field, cells containing MPs but without magnetic field, and cells alone with magnetic field). Moreover, we succeeded in differentiation of early muscle cells with striated myofibrils in culture at 0.05 T. The precisely quantitative and stable stimulus induced by a magnetic field developed in the present study offers a new approach to elucidate the entire process of myoblast differentiation into myotubes.  相似文献   

13.
Qiu GM  Xu YY  Zhu BK  Qiu GL 《Biomacromolecules》2005,6(2):1041-1047
A fluorescent, magnetic composite poly(styrene-maleic anhydride) microsphere, suitable for conjugation with polysaccharide, was synthesized using magnetite/europium phthalate particles as seeds by copolymerization of styrene and maleic anhydride. The magnetite/europium phthalate particles were wrapped up by poly(ethylene glycol), which improved the affinity between the seed particles and the monomers. The composite microspheres obtained, with a diameter of 0.15-0.7 microm, contain 586-1013 microg of magnetite/g of microsphere and 0.5-16 mmol surface anhydride groups/g of microsphere. Heparin was conjugated with the reactive surface anhydride groups on the surface of the microspheres by covalent binding to obtain a fluorescent, magnetic, polysaccharide-based microsphere. The microspheres not only retain their bioactivities but also provide magnetic susceptibility and fluorescence. They can be used as a carrier with magnetic orientation and fluorescence tracer for potent drug targeting. The orientation, tracer, and anticoagulation of the fluorescence, magnetic, polysaccharide-based microspheres were studied. The anticoagulant activity of the microspheres and heparin binding capacity reached 54,212.8 U and 607.1 mg/g of dry microspheres. The activity recovery was 50.2%. The anticoagulant activity of the microspheres increases with the increase of the conjugated heparin on the surface of the microspheres and the decrease of the microsphere size. Furthermore, The fluorescent, magnetic, polysaccharide-based microspheres can be easily transported to a given position in a magnetic field and traced via their fluorescence.  相似文献   

14.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

15.
旋转恒定磁场对TNFa和CHX诱导的Hela细胞凋亡的影响   总被引:2,自引:2,他引:0  
目的:研究旋转恒定磁场与凋亡诱导剂肿瘤坏死因子和放线菌酮的协同作用。方法:设置暴磁组和非暴磁组,用T检验的方法比较暴磁组和非暴磁组细胞凋亡的差别。结果:在其它条件相同的情况下,暴磁处理促进了由肿瘤坏死因子和放线菌酮诱导的Hela细胞的凋亡,但是单独暴磁处理或者暴磁处理与肿瘤坏事因子和放线菌酮其中之一共同处理并没有对细胞的凋亡产生显著的影响。结论:旋转恒定磁场能够与肿瘤坏死因子和放线菌酮产生协同作用。  相似文献   

16.
We studied the swimming orientation of the ciliated protozoan Paramecium aurelia in a static magnetic field (0.78 T). P. aurelia is a complex of species termed syngens, whose cell morphology appears similar on microscopic examination. In the magnetic field, the cells of some syngens gradually changed their swimming orientation so that they were swimming perpendicular or parallel to the magnetic field, although such sensitivity to magnetic fields differs between syngens. When the temperature of the cell suspension was raised, the magnetic sensitivity of the cells was decreased. On the other hand, when the cells were cultured beforehand at a high temperature, their magnetic sensitivity was increased. These results raise the possibility that membrane lipid fluidity, which is inversely proportional to the membrane lipid order, contributes to the magnetic orientation of syngens. In this study, measurements of membrane lipid fluidity obtained using fluorescence image analysis with the lipophilic dye, laurdan (6-lauroyl-2-dimethylaminonaphtalene), showed that the degree of membrane lipid fluidity was correlated with the differences in magnetic orientation between syngens. That is, the syngens with decreased membrane fluidity showed an increased degree of magnetic orientation. Therefore, the membrane lipid order is a key factor in the magnetic orientation of Paramecium swimming.  相似文献   

17.
We found that a ciliated protozoan, Paramecium, swam perpendicular to a static (DC) magnetic field (0.68 T). The swimming orientation was similar even when the ionic current through the cell membrane disappeared after saponin treatment. To determine the diamagnetic anisotropy of intracellular organs, macronuclei, cilia, and secretory vesicles, trichocysts, were selectively isolated. Both cilia and trichocysts tended to align their long axis parallel to the magnetic field (0.78 T). Paramecium mutants that lack trichocysts also swam perpendicular to the magnetic field, although the proportion fraction was smaller than the normal population. Since large numbers of cilia and trichocysts are arranged at right angles to the long axis of the cell, the diamagnetic anisotropies of cilia and trichocysts cause the long axis of the cell to align perpendicular to the magnetic field. In contrast to the DC magnetic field, an alternative (AC) magnetic field (60 Hz, 0.65 T) had almost no effect on the swimming orientation of Paramecium.  相似文献   

18.
Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.  相似文献   

19.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号