首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The 26S proteasome represents a major, energy-dependent and self- compartmentalizing protease system in eukaryotes. The proteolytic core of this complex, the 20S proteasome, is also ubiquitous in archaea. Although absent from most eubacteria, this multi- subunit protease was recently discovered in Rhodococcus and appears to be confined to actinomycetes. The eubacterial 20S proteasome represents an attractive complementary system to study proteasome assembly, quaternary structure, and catalytic mechanism. In addition, it is likely to contribute substantially to our understanding of the role of various self-compartmentalizing proteases in bacterial cells.  相似文献   

2.
The 26S proteasome is a self-compartmentalizing protease responsible for the degradation of intracellular proteins. This giant intracellular protease is formed by several subunits arranged into two 19S polar caps-where protein recognition and ATP-dependent unfolding occur-flanking a 20S central barrel-shaped structure with an inner proteolytic chamber. Proteins targeted to the 26S proteasome are conjugated with a polyubiquitin chain by an enzymatic cascade before delivery to the 26S proteasome for degradation into oligopeptides. As a self-compartmentalizing protease, the 26S proteasome circumvents proteins not destined for degradation and can be deployed to the cytoplasmic and nuclear compartments. The 26S proteasome is a representative of emerging group of giant proteases, including tricorn protease, multicorn protease, and TPPII (tripeptidyl peptidase II).  相似文献   

3.
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.  相似文献   

4.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

5.
蛋白酶体结构和功能研究进展   总被引:3,自引:0,他引:3  
蛋白酶体是真核细胞内依赖ATP的蛋白质水解途径的重要成分,负责大多数细胞内蛋白质的降解. 20 S蛋白酶体有多种肽酶活性,其活性位点为Thr. 19 S复合物与20 S蛋白酶体结合成为26 S复合物,能降解泛素化蛋白.近几年来,蛋白酶体的分子组成、亚基、生化机理、胞内功能等方面的研究取得了明显进展.  相似文献   

6.
The 26S proteasome is the central protease of the ubiquitin-dependent pathway of protein degradation. The molecule has a molecular mass of approximately 2000 kD and has a highly conserved structure in eukaryotes. The 26S proteasome is formed by a barrel-shaped 20S core complex and two polar 19S complexes. The 20S complex has C2 symmetry and is formed by four seven-membered rings of which the outer rings (-type subunits) are rotated by 25.7° relative to the inner rings while the inner rings (-type subunits) are in register. From a comparison of the activity and regulation of the 26S and 20S particles it can be deduced that the 20S particle contains the protease activity while the 19S complex contains isopeptidase, ATPase and protein unfolding activities. In this article we describe the structures of various proteasome complexes as determined by electron microscopy and discuss structural implications of their subunit sequences.  相似文献   

7.
The 26S proteasome: a dynamic structure   总被引:1,自引:0,他引:1  
The proteasomal system consists of a proteolytic core, the 20S proteasome, which associates in ATP-dependent and independent reactions with endogenous regulators providing specific substrate binding sites, chaperone function and regulation of activity to the protease. The best known regulators of the 20S proteasome are the 11S and the 19S complexes. Three subunits of the 20S proteasome and the two subunits of the 11S regulator are induced by -Interferon. However, there are no indications for an influence of -interferon on the subunit composition of the 19S regulator and only a few data exist about the dynamics of this complex. The analysis of 19S regulator subunits from yeast mutants reveals that the ATPases appear to be stringently organized in the 26S complex, while peripheral non-ATPases, such as S5a, might serve as subunits which shuttle substrates to the enzyme. A novel non-ATPase has been cloned, sequenced and identified in a complex besides the 19S regulator, the function of which is presently unknown. The dynamic structure of the 26S proteasome is also characterized by transient associations with components such as the modulator and isopeptidases. Certain viral proteins can also be associated with components of the proteasomal system and alter enzymatic activities.  相似文献   

8.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

9.
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.  相似文献   

10.
The 20S proteasome is an intriguingly large complex that acts as a proteolytic catalytic machine. Accumulating evidence indicates the existence of multiple factors capable of regulating the proteasome function. They are classified into two different categories, one type of regulator is PA700 or PA28 that is reversibly associated with the 20S proteasome to form enzymatically active proteasomes and the other type including a 300-kDa modulator and PI31 indirectly influences proteasome activity perhaps by promoting or suppressing the assembly of the 20S proteasome with PA700 or PA28. Thus, there have been documented two types of proteasomes composed of a core catalytic proteasome and a pair of symmetrically disposed PA700 or PA28 regulatory particle. Moreover, the recently-identified proteasome containing both PA28 and PA700 appears to play a significant role in the ATP-dependent proteolytic pathway in cells, as can the 26S proteasome which is known as a eukaryotic ATP-dependent protease.  相似文献   

11.
The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other.  相似文献   

12.
We have isolated a large protein complex of approximately 26S from Xenopus laevis oocytes and eggs which is composed of the approximately 20S cylinder particle (multicatalytic proteinase/proteasome) and additional proteinaceous components. In its polypeptide composition and sedimentation coefficient this approximately 26S complex closely resembles the 26S ubiquitin-dependent protease, a high molecular weight multienzyme complex recently described in the literature. Specific antibodies directed against a single subunit of the approximately 20S cylinder particle retain, on affinity columns, the large approximately 26S complex, and on sucrose gradients up to approximately 50% of the approximately 20S cylinder particles present in oocyte extracts sedimented with approximately 26S, suggesting that a large proportion of the approximately 20S particles exists in the cell as a component of the approximately 26S complex. Electron microscopy reveals the approximately 26S complex to be a symmetrical elongated macromolecular assembly of at least three protein particles. The central core of the complex is formed by the approximately 20S cylinder particle to which two other large components are attached at the ends, yielding a dumbbell-shaped complex of approximately 40 nm in length. Dissociation of the approximately 26S complexes releases in addition to approximately 20S cylinder particles a novel type of a disc-shaped particle of approximately 15 nm diameter which may represent the attached components or subcomplexes of them. Based on its structural and biochemical properties we postulate that the approximately 26S complex identified here is identical to the ubiquitin-dependent protease.  相似文献   

13.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

14.
Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.  相似文献   

15.
Intracellular protein degradation is a major source of short antigenic peptides that can be presented on the cell surface in the context of major histocompatibility class I molecules for recognition by cytotoxic T lymphocytes. The capacity of the most important cytosolic protease, the 20 S proteasome, to generate peptide fragments with an average length of 7-8 amino acid residues has been thoroughly investigated. It has been shown that the cleavage products are not randomly generated, but originate from the commitment of the catalytically active subunits to complex recognition motifs in the primary amino acid sequence. The role of the even larger 26 S proteasome is less well defined, however. It has been demonstrated that the 26 S proteasome can bind and degrade ubiquitin-tagged proteins and minigene translation products in vivo and in vitro, but the nature of the degradation products remains elusive. In this study, we present the first analysis of cleavage products from in vitro digestion of the unmodified model substrate beta-casein with both the 26 S and 20 S proteasome. The data we obtained show that 26 S and 20 S proteasomes generate overlapping, but at the same time substantially different, sets of fragments by following very similar instructions.  相似文献   

16.
We have previously cloned a cDNA encoding TBP-1, a protein present in the rat spermatid manchette and outer dense fibers of the developing sperm. TBP-1 contains a heptad repeat of six-leucine zipper fingers at the amino terminus and highly conserved ATPase and DNA/RNA helicase motifs toward the carboxyl terminus. TBP-1 is one of the 20 subunits forming the 19S regulatory complex of the 26S proteasome, an ATP-dependent multisubunit protease found in most eukaryotic cells. We now report the isolation of the 26S proteasome from rat testis and sperm tail and its visualization by whole-mount electron microscopy using negative staining. The 26S proteasome from rat testis was fractionated by Sephacryl S-400/Mono-Q chromatography using homogenates suspended in a 10% glycerol-supplemented buffer. Chromatographic fractions were analyzed by immunoblotting using a specific anti-TBP-1 serum. During the purification of Sak57, a keratin filament present in outer dense fibers from epididymal sperm, we detected a substantial amount of 26S proteasomes. Intact 26S proteasomes from rat testis display a rod-shaped particles about 45 nm in length and 11-17 nm in diameter. Each particle consists of a 20S barrel-shaped component formed by four rings (alphabetabetaalpha), capped by two polar 19S regulatory complexes, each identified by an element known as the "Chinese dragon head motif". TBP-1 is an ATPase-containing subunit of the 19S regulatory cap. Rat sperm preparations displayed both dissociated 26S proteasomes and Sak57 filaments. We hypothesize that 26S proteasomes in the perinuclear-arranged manchette are in a suitable location for recognition, sequestration, and degradation of accumulating ubiquitin-conjugated somatic and transient testis-specific histones during spermiogenesis. In the sperm tail, the 26S proteasome may have a role in the remodeling of the outer dense fibers and other tail components during epididymal transit.  相似文献   

17.
26S proteasomes are multisubunit protease complexes that play the central role in the ubiquitin-dependent protein degradation pathway. The proteolytically active core is formed by the 20S proteasome. Regulatory subunits, principally the 19S cap complex, confer the specificity towards ubiquitinated substrates and an ATP-dependence on proteolysis. Green fluorescence protein (GFP)-tagged versions of either an -subunit of the 20S core or an ATPase subunit of the 19S cap complex were functionally incorporated into the protease complex, thus allowing to monitor the subcellular distribution of 26S proteasomes in living yeast. Our localization studies suggest that proteasomal proteolysis mainly occurs at the nuclear envelope (NE)/rough ER. Implications of proteasomal functions at the NE/rough ER are discussed in the context of published work on ER degradation and with regard to possible targeting mechanisms.  相似文献   

18.
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms.  相似文献   

19.
Inactivation of the 20S proteasome in Mycobacterium smegmatis   总被引:2,自引:2,他引:0  
The 20S proteasome is an essential component of the cytosolic protein turnover apparatus of eukaryotic cells. In higher eukaryotes, the 20S proteasome is responsible for most cytosolic protein turnover and also generates peptides for subsequent presentation by the MHC class I pathway. Structurally, the eukaryotic 20S proteasome is extremely complex, being composed of 14 different subunits. Proteasomes with simplified subunit composition have been identified in certain eubacteria and archaebacteria but, in each case, the proteasome-containing organism is recalcitrant to further molecular genetic analyses. As a result, no in vivo characterization of a simplified eubacterial or archaebacterial proteasome has been reported. We have shown that the genetically tractable eubacterium Mycobacterium smegmatis contains a 20S proteasome, allowing the first in vivo characterization of a simplified 20S proteasome. We use a positive/negative selection scheme to inactivate the genes encoding 20S proteasome subunits and demonstrate that, in contrast to eukaryotic cells, M. smegmatis cells lacking intact proteasome genes are viable and phenotypically indistinguishable from congenic strains containing proteasomes. Implications for the evolution of the protein turnover apparatus are discussed.  相似文献   

20.
Many neurodegenerative diseases are characterized by ubiquitin-positive protein aggregates or inclusion bodies. Ubiquitin-conjugated proteins are degraded by the 20/26S proteasome, and reduced proteasome peptidase activities in brain homogenates have been reported in pathologic lesions of Parkinson's and Alzheimer's diseases. However, it is unknown whether crude extracts of human brain contain other proteases having peptidase activities. We found a novel protease of molecular weight of approximately 105 kDa in normal human brain, which exhibited trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities (corresponding to 52% and 21% of the total activities in crude extracts) but not peptidyl glutamyl peptide hydrolase activity. Both T-L and ChT-L activities of this protease were partially inhibited by proteasome inhibitors (MG132, lactacystin) and, in contrast to those of the proteasome, also by sodium dodecyl sulfate. A simple method to obtain a brain fraction specific to the 20/26S proteasome was developed. Our human brain data suggest that T-L and ChT-L activity levels of the proteasome reported previously may include those of the 105 kDa protease, an enzyme of as yet unknown biological significance, and that it is necessary to separate the proteasome from this protease to evaluate the actual status of the ubiquitin-proteasome system in neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号