首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Angiogenesis has become a major target in cancer therapy. However, current therapeutic strategies have their limitations and raise several problems. In most tumours, anti-angiogenesis treatment targeting VEGF (vascular endothelial growth factor) has only limited overall survival benefit compared with conventional chemotherapy alone, and reveals several specific forms of resistance to anti-VEGF treatment. There is growing evidence that anti-VEGF treatment may induce tumour cell invasion by selecting highly invasive tumour cells or hypoxia-resistant cells, or by up-regulating angiogenic alternative pathways such as FGFs (fibroblast growth factors) or genes triggering new invasive programmes. We have identified new genes up-regulated during glioma growth on the chick CAM (chorioallantoic membrane). Our results indicate that anti-angiogenesis treatment in the experimental glioma model drives expression of critical genes which relate to disease aggressiveness in glioblastoma patients. We have identified a molecular mechanism in tumour cells that allows the switch from an angiogenic to invasive programme. Furthermore, we are focusing our research on alternative inhibitors that act, in part, independently of VEGF. These are endogenous molecules that play a role in the control of tumour growth and may constitute a starting point for further development of novel therapeutic or diagnostic tools.  相似文献   

2.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

3.
AT/RTs (atypical teratoid/rhabdoid tumours) of the CNS (central nervous system) are childhood malignancies associated with poor survival rates due to resistance to conventional treatments such as chemotherapy. We characterized a panel of human AT/RT and MRT (malignant rhabdoid tumour) cell lines for expression of RTKs (receptor tyrosine kinases) and their involvement in tumour growth and survival. When compared with normal brain tissue, AT/RT cell lines overexpressed the IR (insulin receptor) and the IGFIR (insulin-like growth factor-I receptor). Moreover, insulin was secreted by AT/RT cells grown in serum-free medium. Insulin potently activated Akt (also called protein kinase B) in AT/RT cells, as compared with other growth factors, such as epidermal growth factor. Pharmacological inhibitors, neutralizing antibodies, or RNAi (RNA interference) targeting the IR impaired the growth of AT/RT cell lines and induced apoptosis. Inhibitors of the PI3K (phosphoinositide 3-kinase)/Akt pathway also impaired basal and insulin-stimulated AT/RT cell proliferation. Experiments using RNAi and isoform-specific pharmacological inhibitors established a key role for the class I(A) PI3K p110alpha isoform in AT/RT cell growth and insulin signalling. Taken together, our results reveal a novel role for autocrine signalling by insulin and the IR in growth and survival of malignant human CNS tumour cells via the PI3K/Akt pathway.  相似文献   

4.
Malignant astrogliomas are among the most aggressive, highly vascular and infiltrating tumours bearing a dismal prognosis, mainly due to their resistance to current radiation treatment and chemotherapy. Efforts to identify and target the mechanisms that underlie astroglioma resistance have recently focused on candidate cancer stem cells, their biological properties, interplay with their local microenvironment or 'niche', and their role in tumour progression and recurrence. Both paracrine and autocrine regulation of astroglioma cell behaviour by locally produced cytokines such as the vascular endothelial growth factor (VEGF) are emerging as key factors that determine astroglioma cell fate. Here, we review these recent rapid advances in astroglioma research, with emphasis on the significance of VEGF in astroglioma stem-like cell biology. Furthermore, we highlight the unique DNA damage checkpoint properties of the CD133-marker-positive astroglioma stem-like cells, discuss their potential involvement in astroglioma radioresistance, and consider the implications of this new knowledge for designing combinatorial, more efficient therapeutic strategies.  相似文献   

5.
Angiogenesis in brain tumours   总被引:5,自引:0,他引:5  
Despite aggressive surgery, radiotherapy and chemotherapy, malignant gliomas remain uniformly fatal. To progress, these tumours stimulate the formation of new blood vessels through processes driven primarily by vascular endothelial growth factor (VEGF). However, the resulting vessels are structurally and functionally abnormal, and contribute to a hostile microenvironment (low oxygen tension and high interstitial fluid pressure) that selects for a more malignant phenotype with increased morbidity and mortality. Emerging preclinical and clinical data indicate that anti-VEGF therapies are potentially effective in glioblastoma--the most frequent primary brain tumour--and can transiently normalize tumour vessels. This creates a window of opportunity for optimally combining chemotherapeutics and radiation.  相似文献   

6.

Background

Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.

Methods

To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.

Results

Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.

Conclusion

These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.  相似文献   

7.
8.
The microvasculature consists of endothelial cells and their surrounding pericytes. Few studies on the regulatory mechanisms of tumour angiogenesis have focused on pericytes. Here we report the identification of tumour-derived PDGFRbeta (+) (platelet-derived growth factor receptor beta) progenitor perivascular cells (PPCs) that have the ability to differentiate into pericytes and regulate vessel stability and vascular survival in tumours. A subset of PDGFRbeta (+) PPCs is recruited from bone marrow to perivascular sites in tumours. Specific inhibition of PDGFRbeta signalling eliminates PDGFRbeta (+) PPCs and mature pericytes around tumour vessels, leading to vascular hyperdilation and endothelial cell apoptosis in pancreatic islet tumours of transgenic Rip1Tag2 mice.  相似文献   

9.
Vascular endothelial growth factor (VEGF) receptor blockade impairs lung growth and decreases nitric oxide (NO) production in neonatal rat lungs. Inhaled NO (iNO) treatment after VEGF inhibition preserves lung growth in infant rats by unknown mechanisms. We hypothesized that neonatal VEGF inhibition disrupts lung growth by causing apoptosis in endothelial cells, which is attenuated by early iNO treatment. Three-day-old rats received SU-5416, an inhibitor of VEGF receptor, or its vehicle and were raised in room air with or without iNO (10 ppm). SU-5416 reduced alveolar counts and lung vessel density by 28% (P < 0.005) and 21% (P < 0.05), respectively, as early as at 7 days of age. SU-5416 increased lung active caspase-3 protein by 60% at 5 days of age (P < 0.05), which subsided by 7 days of age, suggesting a transient increase in lung apoptosis after VEGF blockade. Apoptosis primarily colocalized to lung vascular endothelial cells, and SU-5416 increased endothelial cell apoptotic index by eightfold at 5 days of age (P <0.0001). iNO treatment after SU-5416 prevented the increases in lung active caspase-3 and in endothelial cell apoptotic index. There was no difference in alveolar type 2 cell number between control and SU-5416-treated rats. We conclude that neonatal VEGF receptor inhibition causes transient apoptosis in pulmonary endothelium, which is followed by persistently impaired lung growth. Early iNO treatment after VEGF inhibition reduces endothelial cell apoptosis in neonatal lungs. We speculate that enhancing endothelial cell survival after lung injury may preserve neonatal lung growth in bronchopulmonary dysplasia.  相似文献   

10.
11.
The establishment of a functional, integrated vascular system is instrumental for tissue growth and homeostasis. Without blood vessels no adequate nutrition and oxygen would be provided to cells, nor could the undesired waste products be efficiently removed. Blood vessels constitute therefore one of the largest and most complex body network whose assembly depends on the precise balance of growth factors acting in a complementary and coordinated manner with cells of several identities. However, the vessels that are crucial for life can also foster death, given their involvement in cancer progression towards malignancy and metastasis. Targeting tumor vasculature has thus arisen as an appealing anti-cancer therapeutic approach. Since the milestone achievements that vascular endothelial growth factor (VEGF) blockade suppressed angiogenesis and tumor growth in mice and prolonged the survival of cancer patients when administered in combination with chemotherapy, the clinical development of anti-VEGF(R) drugs has accelerated remarkably. FDA has approved the use of bevacizumab – a humanized monoclonal antibody against VEGF – in colorectal, lung and metastatic breast cancers in combination with standard chemotherapy. Additional broad-spectrum VEGF receptor tyrosine kinase inhibitors, such as sunitinib and sorafenib, are used in monotherapy for metastatic renal carcinoma, while sunitinib is also approved for imatinib resistant gastrointestinal stromal tumors and sorafenib for advanced stage hepatocellular carcinoma. Nevertheless, the survival benefit offered by VEGF(R) blockers, either as single agents or in combination with chemotherapy, is calculated merely in the order of months. Posterior studies in preclinical models have reported that despite reducing primary tumor growth, the inhibition of VEGF increased tumor invasiveness and metastasis. The clinical implications of these findings urge the need to reconcile these conflicting results. Anti-angiogenic therapy represents a significant step forth in cancer therapy and in our understanding of cancer biology, but it is also clear that we need to learn how to use it. What is the biological consequence of VEGF-blockade? Does VEGF inhibition starve the tumor to death – as initially postulated – or does it rather foster malignancy? Can anti-VEGF(R) therapy favor tumor vessel formation by VEGF-independent means? Tumors are very diverse and plastic entities, able to adapt to the harshest conditions; this is also reflected by the tumor vasculature. Lessons from the bench to the bedside and vice versa have taught us that the diversity of signals underlying tumor vessel growth will likely be responsive (or resistant) to distinct therapeutic approaches. In this review, we propose a reflection of the different strategies tumors use to grow blood vessels and how these can have impact on the (un)success of current anti-angiogenic therapies.  相似文献   

12.
Angiogenesis, the physiological process of sprouting of new blood vessels from pre-existing ones, is a key biological feature of almost all cancers. Among the multitude of factors driving tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most potent, exerting myriad effects on vascular pruning and sprouting, permeability, network formation, proliferation, and cell death. Despite the initial unimpressive clinical performance of anti-VEGF antibody (bevacizumab) as cancer monotherapy, clear improvements in clinical outcomes following combination bevacizumab and chemotherapy regimens and multi-targeted VEGF receptor tyrosine kinase inhibitors (sorafenib and sunitinib) in select tumor types have established VEGF-targeted agents as an effective means of controlling cancer growth. Prolongation of overall survival and cure with these agents, however, remains elusive. Moreover, recent data has revealed key differences in the therapeutic and biological tumor response to antibody versus receptor kinase VEGF inhibitors and suggested, at least pre-clinically, that VEGF blockade in certain circumstances may actually promote more aggressive tumor growth. Given the diverse mechanisms and potentially opposing roles of VEGF neutralization in cancer biology, identification of novel biomarkers predictive of in vivo angiogenic responses may hold the key to optimizing therapeutic outcomes of anti-VEGF therapy in future cancer patients.  相似文献   

13.
腺相关病毒(adeno-associated virus,AAV)本身具有抗肿瘤活性,以其为基础构建的重组腺相关病毒(rAAV)作为肿瘤基因治疗载体已应用于临床试验研究。与其他的药物一样,单一的AAV基因药物,可能无法对肿瘤这一多基因、多步骤的复杂疾病发挥有效的治疗作用。国内外实验研究发现,多种化疗药物和放疗手段,不但可以提高rAAV载体的基因表达效率,也能促进AAV病毒本身的复制;反过来,AAV可以提高肿瘤细胞对放化疗的敏感性。联合AAV与其他的肿瘤治疗策略将有助于优化肿瘤治疗效果。  相似文献   

14.
There are about 2.5 million glomeruli in the kidneys each consisting of a barrel of glomerular basement membrane surrounded by glomerular endothelial cells on the inside and glomerular epithelial cells with established foot processes (podocytes) on the outside. Defects in this filtration apparatus lead to glomerular vascular leak or proteinuria. The role of vascular endothelial growth factor (VEGF) in the regulation of glomerular vascular permeability is still unclear. Recent studies indicate that patients receiving anti-VEGF antibody therapy may have an increased incidence of proteinuria. In a different setting, pregnancies complicated by preeclampsia are associated with elevated soluble VEGF receptor 1 protein (sFlt-1), endothelial cell dysfunction and proteinuria. These studies suggest that neutralization of physiologic levels of VEGF, a key endothelial survival factor, may lead to proteinuria. In the present study, we evaluated the potential of anti-VEGF neutralizing antibodies and sFlt-1 in the induction of proteinuria. Our studies demonstrate that anti-VEGF antibodies and sFlt-1 cause rapid glomerular endothelial cell detachment and hypertrophy, in association with down-regulation of nephrin, a key epithelial protein in the glomerular filtration apparatus. These studies suggest that down-regulation or neutralization of circulating VEGF may play an important role in the induction of proteinuria in various kidney diseases, some forms of cancer therapy and also in women with preeclampsia.  相似文献   

15.
Pericytes have been suggested to play a role in regulation of vessel stability; one mechanism for this stabilization may be via pericyte-derived vascular endothelial growth factor (VEGF). To test the hypothesis that differentiation of mesenchymal cells to pericytes/smooth muscle cells (SMC) is accompanied by VEGF expression, we used endothelial cell (EC) and mesenchymal cell cocultures to model cell-cell interactions that occur during vessel development. Coculture of EC and 10T1/2 cells, multipotent mesenchymal cells, led to induction of VEGF expression by 10T1/2 cells. Increased VEGF expression was dependent on contact between EC-10T1/2 and was mediated by transforming growth factorbeta (TGFbeta). A majority of VEGF produced in coculture was cell- and/or matrix-associated. Treatment of cells with high salt, protamine, heparin, or suramin released significant VEGF, suggesting that heparan sulfate proteoglycan might be sequestering some of the VEGF. Inhibition of VEGF in cocultures led to a 75% increase in EC apoptosis, indicating that EC survival in cocultures is dependent on 10T1/2-derived VEGF. VEGF gene expression in developing retinal vasculature was observed in pericytes contacting newly formed microvessels. Our observations indicate that differentiated pericytes produce VEGF that may act in a juxtacrine/paracrine manner as a survival and/or stabilizing factor for EC in microvessels.  相似文献   

16.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

17.
18.
19.

Background

Vascular endothelial growth factor (VEGF) is well known for its role in normal and pathologic neovascularization. However, a growing body of evidence indicates that VEGF also acts on non-vascular cells, both developmentally as well as in the adult. In light of the widespread use of systemic and intraocular anti-VEGF therapies for the treatment of angiogenesis associated with tumor growth and wet macular degeneration, systematic investigation of the role of VEGF in the adult retina is critical.

Methods and Findings

Using immunohistochemistry and Lac-Z reporter mouse lines, we report that VEGF is produced by various cells in the adult mouse retina and that VEGFR2, the primary signaling receptor, is also widely expressed, with strong expression by Müller cells and photoreceptors. Systemic neutralization of VEGF was accomplished in mice by adenoviral expression of sFlt1. After 14 days of VEGF neutralization, there was no effect on the inner and outer retina vasculature, but a significant increase in apoptosis of cells in the inner and outer nuclear layers. By four weeks, the increase in neural cell death was associated with reduced thickness of the inner and outer nuclear layers and a decline in retinal function as measured by electroretinograms. siRNA-based suppression of VEGF expression in a Müller cell line in vitro supports the existence of an autocrine role for VEGF in Müller cell survival. Similarly, the addition of exogenous VEGF to freshly isolated photoreceptor cells and outer-nuclear-layer explants demonstrated VEGF to be highly neuroprotective.

Conclusions

These results indicate an important role for endogenous VEGF in the maintenance and function of adult retina neuronal cells and indicate that anti-VEGF therapies should be administered with caution.  相似文献   

20.
VEGF-B     
Despite its early discovery and high sequence homology to the other VEGF family members, the biological function of VEGF-B remained debatable for a long time, and VEGF-B has received little attention from the field thus far. Recently, we and others have found that (1) VEGF-B is a potent survival factor for different types of cells by inhibiting apoptosis via suppressing the expression of BH3-only protein and other apoptotic/cell death-related genes. (2) VEGF-B has a negligible role in inducing blood vessel growth in most organs. Instead, it is critically required for blood vessel survival. VEGF-B targeting inhibited pathological angiogenesis by abolishing blood vessel survival in different animal models. (3) Using different types of neuro-injury and neurodegenerative disease models, VEGF-B treatment protected endangered neurons from apoptosis without inducing undesired blood vessel growth or permeability. Thus, VEGF-B is the first member of the VEGF family that has a potent survival/anti-apoptotic effect, while lacking a general angiogenic activity. Our work thus advocates that the major function of VEGF-B is to act as a “survival”, rather than an “angiogenic” factor, and implicates a therapeutic potential of VEGF-B in treating different types of vascular and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号