首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

2.
Computational screening of the chromosome-4 sequence of the rice cultivar Nipponbare (Oryza sativa L. japonica) revealed 1,844 tandem simple sequence repeats (SSRs) or microsatellites with SSR motifs 20 bp and repeated unit length of 1–6 base pairs. Thus SSRs occur once in every 18.8 kb, on the average, on the chromosome with one SSR per 23.8 kb and 16 kb on the short and long arms, respectively. No SSR was detected in the core region of the centromere. Poly(AT) n repeats represented the most abundant and length polymorphic class of SSRs on the chromosome, but it did not occur in the exons. GC-rich trinucleotide repeats were most abundant in the coding regions, representing 71.69% of the SSRs identified in the exons. Two hundred and twenty four SSRs were associated with the repetitive DNA sequences, most of them were poly(AT) n tracts. Sequence variations of SSRs between two cultivars, representing the two subspecies of the Asian cultivated rice indica and japonica, were identified, revealing that divergence and convergence of the two subspecies could be traced by the analysis of SSRs. These results provide a great opportunity for SSR-based marker development and comparative genome analysis of the two subspecies of the Asian cultivated rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by Q. Zhang  相似文献   

3.
We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated that SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri-and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di-and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.  相似文献   

4.
Summary Highly repeated sequences of nuclear DNA from barley Hordeum vulgare (L.) variety Erfa were cloned. Several clones containing barley specific repeated DNA were analysed by sequence analysis and Southern blot hybridization. The investigated repeats differ from each other in their length, sequence and redundancy. Their length ranges from 36 bp to about 180 bp. The repeats are AT-rich and differ widely in their redundancy within the barley genome. Southern analysis showed that the repeats belong to different repetition complexes. The possibility for utilizing these clones as probes for simple and fast genome analysis is demonstrated in squash dot experiments.  相似文献   

5.
Microsatellites, or simple sequence repeats (SSRs), are usually regarded as the markers of choice in population genetics research because they exhibit high variability. The development cost of these markers is usually high. In addition, microsatellite primers developed for one species often do not cross-amplify in related species, requiring separate development for each species. However, microsatellites found in expressed sequence tags (ESTs) might better cross-amplify as they reside in or near conserved coding DNA. In this study, we identified 14 Pinus taeda (loblolly pine) EST-SSRs from public EST databases and tested for their cross-species transferability to P. contorta ssp. latifolia, P. ponderosa, and P. sylvestris. As part of our development of a P. contorta microsatellite set, we also compared their transferability to that of 99 traditional microsatellite markers developed in P. taeda and tested on P. contorta ssp. latifolia. Compared to traditional microsatellites, EST-SSRs had higher transfer rates across pine species; however, the level of polymorphism of microsatellites derived from ESTs was lower. Sequence analyses revealed that the frequencies of insertions/deletions and base substitutions were lower in EST-SSRs than in other types of microsatellites, confirming that EST-SSRs are more conserved than traditional SSRs. Our results also provide a battery of 23 polymorphic, robust microsatellite primer pairs for lodgepole pine.Communicated by O. Savolainen  相似文献   

6.
A size-fractionated TaqI genomic library of seashore paspalum (Paspalum vaginatum Swartz) was screened for the presence of (GA) n and (CA) n simple sequence repeats (SSRs). A total of 54 clones with a positive signal were detected among 13,000 clones screened. Forty-seven clones having repeats of n 3 were identified, of which 85% were perfect, 13% were imperfect and 2% were compound repeat sequences. Five of ten primer pairs synthesized to amplify selected loci resulted in a product in the expected size range and were subsequently used to examine SSR polymorphisms among 46 ecotypes of P. vaginatum. The number of alleles resolved on agarose or polyacrylamide gels were similar and ranged from 6 to 16 with an average of 14 per locus. Phenetic analysis of SSR polymorphisms revealed genetic relationships among the P. vaginatum ecotypes that were in general agreement with relationships determined previously by RAPD analysis of the same plant materials. Further screening of the genomic library did not identify (AT) n , trimeric or tetrameric repeats. Hybridization of an (ATT)8 oligonucleotide probe to genomic DNA isolated from I. batatas, E. coli, Citrullis lanatus and P. vaginatum suggested that the P. vaginatum genome contained significantly fewer ATT repeats than either the I. batatas or C. lanatus genome.  相似文献   

7.
8.
We report the sequence and variability parameters of 16 microsatellite primer pairs obtained from two mango (Mangifera indica L.) genomic libraries after digestion of DNA of the cultivar Tommy Atkins with HaeIII and RsaI and enrichment in CT repeats. Although no significant differences were recorded between the two libraries in the informativeness of the markers obtained, the RsaI library was shown to be more useful than the HaeIII taking into account the efficiency of the library and the feasibility of clone sequencing. The polymorphism revealed by those microsatellites was evaluated in a collection of 28 mango cultivars of different origins. A total of 88 fragments were detected with the 16 simple sequence repeats (SSRs) with an average of 5.5 bands/SSR. Two primer pairs amplified more than a single locus. The mean expected and observed heterozygosities over the 14 single-locus SSRs averaged 0.65 and 0.69 respectively. The total value for the probability of identity was 2.74 × 10−9. The SSRs studied allowed the unambiguous identification of all the mango genotypes studied and this discrimination can be carried out with just three selected microsatellites. UPGMA cluster analysis and Principal coordinates analysis group the genotypes according to their origin and their classification as monoembryonic or polyembryonic types reflecting the pedigree of the cultivars and the movement of mango germplasm. The results demonstrate the usefulness of microsatellites for studies on identification, variability, germplasm conservation, domestication and movement of germplasm in mango.  相似文献   

9.
The use of microsatellite DNA markers for soybean genotype identification   总被引:36,自引:0,他引:36  
Conventional morphological and pigementation traits, as well as disease resistance, have been used to distinguish the uniqueness of new soybean cultivars for purposes of plant variety protection. With increasing numbers of cultivars and a finite number of conventional characters, it has become apparent that such traits will not suffice to establish uniqueness. The objective of this work was to provide an initial evaluation of microsatellite or simple-sequence-repeat (SSR) DNA markers to develop unique DNA profiles of soybean genotypes. Microsatellites are DNA sequences such as (AT) n /(TA) n and (ATT) n /(TAA) n that are composed of tandemly repeated 2–5-basepair DNA core sequences. The DNA sequences flanking microsatellites are generally conserved allowing the selection of polymerase chain reaction (PCR) primers that will amplify the intervening SSR. Variation in the number of tandem repeats, n, results in PCR product length differences. The SSR alleles present at three (AT) n /(TA) n and four (ATT) n /(TAA) n loci were determined in each of 96 diverse soybean genotypes. Between 11 and 26 alleles were found at each of the seven loci. Only two genotypes had identical SSR allelic profiles and these had very similar pedigrees. The gene diversity for the seven markers averaged 0.87 for all 96 genotypes and 0.74 for a subset of 26 North American cultivars. These are much higher than soybean gene diversity values obtained using RFLP markers, and are similar to the average values obtained for human microsatellite markers. SSR markers provide an excellent complement to the conventional markers that are currently used to characterize soybean genotypes.  相似文献   

10.
Summary We present a comparison of spacer and coding sequences of histone gene repeats from fourStronglycocentrotus purpuratus individuals. Sequences of two previously cloned units (pCO2 and pSp2) were compared with three new histone gene clones, two of them from a single individual. Within a 1.7-kb region, 59 polymorphic sites were found in spacers, in mRNA nontranslated stretches, and at silent sites in codons of the H4 gene. The permitted silent-site changes were as frequent as in any other region studied. The most abundant polymorphisms were single-base substitutions. The ratio of transitions: tranversions: single-base-pair insertions/deletions was 322. A number of larger insertions/deletions were found, as well as differences in the length of (CTA)n and (CT)n runs. Two of the five cloned repeats contained an insertion of a 195-bp element that is also present at many other sites in the genomes of everyS. purpuratus individual studied. Pairwise comparisons of the different clones indicate that the variation is not uniformly divergent, but ranges from a difference of 0.34% to 3.0% of all nucleotide sites. A parsimonious tree of ancestry constructed from the pariwise comparisons indicates that recombination between the most distantly related repeats has not occurred in the 1–2 million years necessary for accumulation of the variation. The level of sequence variation found within theS. purpuratus population, for both tandemly repeated and single-copy genes, is 25%–50% of that found betweenS. purpuratus andS. drobachiensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号