首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The mechanism by which proteins accumulate in the cell nucleus is not yet known. Two alternative mechanisms are discussed here: (a) selective unidirectional entry of karyophilic proteins through the nuclear pores, and (b) free diffusion of all proteins through the nuclear pores and specific binding of nuclear proteins to nondiffusible components of the nucleoplasm. We present experiments designed to distinguish between these alternatives. After mechanical injury of the Xenopus oocyte nuclear envelope, nuclear proteins were detected in the cytoplasm by immunohistochemical methods. In a second approach, nuclei from X. borealis oocytes were isolated under oil, the nuclear envelopes were removed, and the pure nucleoplasm was injected into the vegetal pole of X. laevis oocytes. With immunohistochemical methods, it was found that each of five nuclear proteins rapidly diffuses out of the injected nucleoplasm into the surrounding cytoplasm. The subsequent transport and accumulation in the intact host nucleus could be shown for the nuclear protein N1 with the aid of a species-specific mAb that reacts only with X. borealis N1. Purified and iodinated nucleoplasmin was injected into the cytoplasm of Xenopus oocytes and its uptake into the nucleus was studied by biochemical methods.  相似文献   

2.
Movement of a karyophilic protein through the nuclear pores of oocytes   总被引:98,自引:42,他引:56       下载免费PDF全文
It has recently been shown that large karyophilic proteins are transported across the nuclear envelope in amphibian oocytes. In consideration of this, the present experiments were performed to identify the specific sites within the envelope through which transport occurs and determine if molecular size is a limiting factor in the transport process. The following experimental procedure was employed: Colloidal gold particles, varying in size from approximately 20 to 170 A in diameter were coated with nucleoplasmin, a 165,000-mol-wt karyophilic protein, which is known to be transported through the envelope. The coated gold particles were microinjected into the cytoplasm of Xenopus oocytes, and the cells were fixed 15 min and 1 h later. The intracellular localization of the gold was then determined with the electron microscope. It was found that nucleoplasmin-coated particles readily enter the nucleus. On the basis of the distribution of the particles associated with the envelope, we concluded that transport occurs through the nuclear pores. Furthermore, the size distributions of the gold particles present in the nucleus and cytoplasm were not significantly different, indicating that the envelope does not discriminate among particles with diameters ranging from 50 to 200 A (the dimensions including the nucleoplasmin coat). Colloidal gold coated with trypsin-digested nucleoplasmin (which lacks the polypeptide domain required for transport) or exogenous polyvinylpyrrolidone were largely excluded from the nucleus and showed no evidence of transport.  相似文献   

3.
We have used heavy-metal shadowing to study the interaction of morphological components of Xenopus oocyte nuclear pore complexes with nucleoplasmin conjugated to colloidal gold. When microinjected into Xenopus oocytes, gold-labelled nucleoplasmin accumulated on the axis of the pores. Envelopes partially disrupted by treatment with low ionic strength buffer produced isolated islands of pores together with substantial quantities of rings deriving from the cytoplasmic and nucleoplasmic faces of the pores. In preparations from oocytes in which nucleoplasmin-gold had been microinjected, most (238/288) of the rings examined had also been labelled and, in the majority of these (60%), the label was located centrally within isolated rings. The central positioning of the nucleoplasmin-gold in isolated rings indicated that these morphological components of the pores were probably involved in the transport of nucleoplasmin into the nucleus, either by way of the initial binding of the molecule or by way of its translocation across the nuclear envelope. Although more work is required to resolve the precise stage at which the rings are involved, a number of lines of evidence suggested that they were more likely to be involved in the translocation step rather than in initial binding of nucleoplasmin.  相似文献   

4.
Fluorescence microphotolysis was employed to measure in single living cells the kinetics of nucleocytoplasmic transport and the coefficients of intracellular diffusional mobility for the nuclear non-chromosomal protein nucleoplasmin. Nucleoplasmin was isolated from Xenopus ovary and labeled fluorescently. By injection into Xenopus oocytes it was ascertained that fluorescent labeling did not interfere with normal nuclear accumulation. Upon injection into the cytoplasm of various mammalian cell types nucleoplasmin was rapidly taken up by the nucleus. In rat hepatoma cells the half-time of nuclear uptake was approx. 5 min at 37 degrees C; the nucleocytoplasmic equilibrium concentration ratio had a maximum of 6.5 +/- 1.4 and depended on the injected amount. Upon co-injection of ATPases or reduction of temperature to 10 degrees C a nucleocytoplasmic equilization but no nuclear accumulation was observed. Equilization was fast (time constant 65 s at 23 degrees C), similar to that of 10-kDa dextran permeating the nuclear envelope by simple diffusion through functional pores. Nucleoplasmin (160 kDa), however, is too large to permeate passively the nuclear envelope, which is apparent from the fact that its tryptic 'core' fragment (100 kDa) could not permeate the nuclear envelope. On the other hand, a large fluorescent protein, phycoerythrin (240 kDa), was targeted to the nucleus by conjugation with nucleoplasmin. In the nucleus-to-cytoplasm direction the nuclear envelope was completely impermeable to nucleoplasmin, independently of temperature or ATP depletion. Nucleoplasmin, its core fragment, phycoerythrin and the phycoerythrin-nucleoplasmin conjugate were mobile in both cytoplasm and nucleus.  相似文献   

5.
Many nuclear proteins are released into the cytoplasm at prometaphase and are transported back into the daughter nuclei at the end of mitosis. To determine the role of this reentry in nuclear remodelling during early interphase, we experimentally manipulated nuclear protein uptake in dividing cells. Recently we and others have shown that signal-dependent, pore complex-mediated uptake of nuclear protein is blocked in living cells on microinjection of the lectin wheat germ agglutinin (WGA), or of antibodies such as PI1 that are directed against WGA-binding pore complex glycoproteins. In the present study, we microinjected mitotic PtK2 cells with WGA or antibody PI1 and followed nuclear reorganization of the daughter cells by immunofluorescence and electron microscopy. The inhibitory effect on nuclear protein uptake was monitored by co-injection of the karyophilic protein nucleoplasmin. When injected by itself early in mitosis, nucleoplasmin became sequestered into the daughter nuclei as they entered telophase. In contrast, nucleoplasmin was excluded from the daughter nuclei in the presence of WGA or antibody PI1. Although PtK2 cells with blocked nuclear protein uptake completed cytokinesis, their nuclei showed a telophaselike organization characterized by highly condensed chromatin surrounded by a nuclear envelope containing a few pore complexes. These findings suggest that pore complexes become functional as early as telophase, in close coincidence with nuclear envelope reformation. They further indicate that the extensive structural rearrangement of the nucleus during the telophase-G1 transition is dependent on the influx of karyophilic proteins from the cytoplasm through the pore complexes, and is not due solely to chromosome-associated components.Abbreviations WGA wheat germ agglutinin - GlcNAc N-acetylglucosamine  相似文献   

6.
DNA (from bacteriophage lambda or Xenopus) is assembled into nucleus-like structures when mixed with an extract from Xenopus eggs. Electron microscopy shows that these in vitro-reconstituted nuclei possess complete double membranes; some, but not all, nuclei have pore complexes. Extracts depleted of their endogenous ATP (by addition of ATPases) cannot assemble nuclear envelopes visible by phase-contrast microscopy. Once synthetic nuclei are assembled, however, they are stable when ATP is subsequently depleted, although their chromatin becomes condensed. About one-fourth of the nuclei assembled in vitro from lambda DNA accumulate nuclear proteins such as nucleoplasmin. ATP depletion blocks nucleoplasmin accumulation both in vitro, in pre-assembled synthetic nuclei, and in vivo, in the nucleus of microinjected oocytes. However, nucleoplasmin previously accumulated by reconstituted nuclei or by the germinal vesicle in microinjected oocytes is retained after ATP depletion.  相似文献   

7.
The importance of glycoproteins located in the nuclear envelope in nuclear transport was tested by microinjection of karyophilic proteins into the cytoplasm of cultured human cells together with various lectins. Wheat germ agglutinin (WGA) blocked the nuclear transport of nucleoplasmin, a nuclear protein of Xenopus laevis oocytes, and of nonnuclear proteins conjugated with a synthetic peptide containing the nuclear localization signal sequence for simian virus 40 (SV40) large T antigen. Its inhibitory activity persisted for about 1 h after its injection into the cells and then gradually decreased. Export of at least some kinds of RNA from the nucleus seemed not to be affected by WGA even when import of the proteins into the nucleus was completely blocked (within 1 h after WGA injection). Moreover, WGA did not inhibit the passive diffusion of fluorescein isothiocyanate (FITC)-dextran (average Mr 17,900) into the nucleus. Wistaria floribunda agglutinin (WFA), concanavalin A (Con A), and lentil lectin did not block nuclear transport. These results indicate that WGA specifically blocks active protein import, but not passive diffusion of materials into the nucleus.  相似文献   

8.
Nucleoplasmin: the archetypal molecular chaperone   总被引:7,自引:0,他引:7  
Nucleoplasmin was the first protein to be described as a molecular chaperone. Studies of nucleoplasmin have resulted in advances in two areas of cell biology. Firstly, the pathway of nucleosome assembly in Xenopus oocytes and eggs has been elucidated and is the only assembly pathway known in detail. Nucleosome assembly represents the major chaperoning function of nucleoplasmin. Secondly, nucleoplasmin has been used to elucidate the transport of proteins into the nucleus, revealing a selective entry mechanism for nuclear proteins, passage through the nuclear pore complex, and a two-step mechanism of transport. The properties and functions of nucleoplasmin are reviewed, together with other proteins which are related either structurally or functionally to nucleoplasmin.  相似文献   

9.
The lectin wheat germ agglutinin (WGA), which has been reported to inhibit nuclear protein uptake in vitro by isolated nuclei (Finlay et al. (1987) J. Cell Biol. 104, 189), also blocks, on microinjection into living cells, the migration of proteins into the cell nucleus. Radioactively labeled nuclear proteins were injected into the cytoplasm of Xenopus oocytes and their reentry into the nucleus was analyzed in the presence or absence of WGA by two-dimensional gel electrophoresis. In another set of experiments, fluorescently labeled nucleoplasmin was injected, alone or together with WGA, into the cytoplasm of rat hepatoma cells, and its nucleocytoplasmic distribution was studied by quantitative laser fluorescence microscopy. The results indicate that WGA inhibits the uptake of karyophilic proteins in general, independent of their sizes. Since the nucleocytoplasmic flux of a dextran with Mr 10,000 was not affected it can be excluded that WGA acts by a general blockade or constriction of the functional pore channel. At reduced WGA concentrations, the rate but not the final extent of nuclear protein accumulation was decreased. These findings support the concept that the O-glycosidically bound carbohydrates of certain nuclear pore complex proteins are exposed to the pore interior and that these regions are probably involved in nucleocytoplasmic translocation processes.  相似文献   

10.
In studies on the specific migration of macromolecules across the nuclear envelope, a karyophilic protein was injected into the cytoplasm of cultured cells and its subsequent location in the cell was examined. Nucleoplasmin of frog nuclear protein was used for this experiment. When [125I]nucleoplasmin was introduced into the cytoplasm of mammalian cells (human and mouse) by red blood cell-mediated microinjection, it rapidly accumulated in the nucleus. When nucleoplasmin conjugated with [125I]IgG against chromosomal protein was introduced similarly, it also accumulated rapidly in the nucleus, and reacted with its antigen inside the nucleus. On the contrary, when IgG alone or IgG conjugated with BSA were introduced, they did not migrate from the cytoplasm into the nucleus. These findings imply that the migration of macromolecules from the cytoplasm to the nucleus does not depend only on their molecular size but also on a specific transport mechanism, and that karyophilic proteins may act as useful carriers in the transfer of exogenous proteins into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号