首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Using four-leaf tomato plants (Lycopersicon esculentum Mill) as a model system, we examined the spatial distribution of damage-induced changes in foliar protein activities. Terminal leaflets of third leaves of tomato plants were subjected to one of four types of damage, and the activities of four putative defenses — polyphenol oxidase, peroxidase, lipoxygenase, and proteinase inhibitors — were determined at four leaflet positions relative to the damaged leaflet. Multiple proteins were differentially induced by the different damage types. For a given damage type, the spatial pattern of induction was different for different proteins. More exhaustive spatial mapping of the polyphenol oxidase response to feeding by Helicoverpa zea Boddie revealed that damaged plants were more variable, both within and between plants, in the activity of this enzyme than undamaged plants. The spatial patterns of induction of these four putative defenses throughout the plant suggest that the induced plant is chemically heterogeneous and that different mechanisms of defense operate in different regions of the plant. These data are critical to an elucidation of cause-effect relationships between induced chemicals and induced resistance in tomato foliage. In addition, these data suggest that induction functions, in part, to increase chemical variation in tomato plants; the potential role of phytochemical variation in plant defense is discussed.  相似文献   

2.
Experiments were conducted to investigate the potential induction of plant defenses by Myzus persicae Sulzer (Homoptera: Aphididae) feeding on five lupin, Lupinus spp. (Leguminosae), varieties with well‐characterized levels of aphid resistance. Myzus persicae feeding on L. angustifolius and L. luteus varieties induced genotype‐specific changes in their host that were not consistent with the level of aphid resistance or the plant species. The plant responses were systemically detected by apterous and alate forms of the aphids. Chemical assays revealed no induction of oxidizing enzyme (catalase, peroxidase, or polyphenol oxidase) activity, serine or cystein proteinase inhibitors, or soluble phenolics in any of the five varieties tested following 3 days of feeding by 10 or 30 aphids. However, there were significant differences among the five lupin varieties in the levels of peroxidase and polyphenol oxidase activity, proteinase inhibitors, and soluble phenolics.  相似文献   

3.
Herbivore-induced plants responses can affect the preference and performance of herbivores and their natural enemies. These responses may vary depending on the identity and number of herbivore species feeding on the plant so that when herbivores from different guilds feed on plants, the interactions between plants, herbivores, and natural enemies may be disrupted. Tomato plants were damaged either by the caterpillar Spodoptera exigua, or the aphid Macrosiphum euphorbiae, or damaged by both herbivores, or undamaged controls. We measured the preference and performance of S. exigua and its parasitoid Cotesia marginiventris, and activity of proteinase inhibitors (PI) as an indicator of induced resistance. Compared to undamaged plants, caterpillar damage reduced the number of eggs laid by S. exigua adults, reduced growth, consumption, and survival of larval S. exigua and C. marginiventris, and increased activity of PIs 43%; but did not increase attraction of C. marginiventris. While pupal mass of S. exigua was not affected, the pupal mass of C. marginiventris decreased on caterpillar-damaged plants compared to controls. In contrast, plants damaged by aphids were preferred for oviposition by S. exigua, and had increased larval consumption and survival, compared to controls. Aphid feeding did not affect the preference or performance of C. marginiventris, or PI activity, compared to controls. While oviposition was deterred on caterpillar-damaged plants, plants damaged by both herbivores received the same amount of oviposition as controls. The attraction of C. marginiventris to plants damaged by caterpillars and aphids was increased compared to controls. However, plants damaged by both herbivores had similar PI activity, larval growth and survival of S. exigua and C. marginiventris, as plants singly damaged by caterpillars. Overall, the preference component for both the herbivore and parasitoid was more strongly affected by damage due to multiple herbivores than the performance component.  相似文献   

4.
We have characterized, using several types of bioassays, the resistance induced in young tomato plants by feeding of the corn earworm, Helicoverpa zea. Beet armyworm larvae, Spodoptera exigua, and leafminers, Liriomyza trifolii, were used to assay the induced resistance. In whole-plant experiments, damage localized to a single leaflet of fourleaf tomato plants induced a systemic increase in resistance such that beet armyworm larvae confined to previously damaged (induced) plants grew at a rate about half that of larvae raised on control plants and consumed less leaf tissue from induced plants than from control plants. In experiments using excised leaves, beet armyworm larvae suffered increased mortality when reared on leaves from induced plants. The strength of this induced resistance varied spatially relative to the damaged position; moreover, the spatial distribution of induced resistance changed over a three-week period following damage. Other experiments demonstrated that the mechanisms of induced resistance in tomato foliage involves both a decrease in larval preference for and a decrease in the nutritional value of induced foliage. Induction also retarded the oviposition and/or early development of leafminers. Thus, induced resistance has relatively severe effects on the biology of subsequent herbivores. These data should allow us to begin to elucidate cause-effect relationships between induced resistance and induced chemistry in tomato plants.  相似文献   

5.
Jasmonate-mediated induced plant resistance affects a community of herbivores   总被引:17,自引:0,他引:17  
1. The negative effect of induced plant resistance on the preference and performance of herbivores is a well‐documented ecological phenomenon that is thought to be important for both plants and herbivores. This study links the well‐developed mechanistic understanding of the biochemistry of induced plant resistance in the tomato system with an examination of how these mechanisms affect the community of herbivores in the field. 2. Several proteins that are induced in tomato foliage following herbivore damage have been linked causally to reductions in herbivore performance under laboratory conditions. Application of jasmonic acid, a natural elicitor of these defensive proteins, to tomato foliage stimulates induced responses to herbivory. 3. Jasmonic acid was sprayed on plants in three doses to generate plants with varying levels of induced responses, which were measured as increases in the activities of proteinase inhibitors and polyphenol oxidase. 4. Field experiments conducted over 3 years indicated that induction of these defensive proteins is associated with decreases in the abundance of all four naturally abundant herbivores, including insects in three feeding guilds, caterpillars, flea beetles, aphids, and thrips. Induced resistance killed early instars of noctuid caterpillars. Adult flea beetles strongly preferred control plants over induced plants, and this effect on host plant preference probably contributed to differences in the natural abundance of flea beetles. 5. The general nature of the effects observed in this study suggests that induced resistance will suppress many members of the herbivore community. By linking plant biochemistry, insect preference, performance, and abundance, tools can be developed to manipulate plant resistance sensibly and to predict its outcome under field conditions.  相似文献   

6.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

7.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

8.
Jasmonate and salicylatemediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In twochoice tests, adult aphids preferred control wheat leaves to MeJA or SA treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJAtreated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJAtreated plants was significantly shorter than on control plants. Total duration of salivation period on SAtreated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJAdependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SAmediated resistance may be phloembased. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA and SAinduced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance.  相似文献   

9.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号