首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Expansion of many tree species lags behind climate change projections. Extreme storms can rapidly overcome this lag, especially for coastal species, but how will storm‐driven expansion shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, or from more distant sources? Answers to these questions have ecological and evolutionary implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma provided an opportunity to address this knowledge gap at the northern range limit of the neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, USA. We observed massive post‐hurricane increases in beach‐stranded A. germinans propagules at, and past, this species’ present day range margin when compared to a previously surveyed nonhurricane year. Yet, propagule dispersal does not guarantee subsequent establishment and reproductive success (i.e., effective dispersal). We also evaluated prior effective dispersal along this coastline with isolated A. germinans trees identified beyond the most northern established population. We used 12 nuclear microsatellite loci to genotype 896 hurricane‐driven drift propagules from nine sites and 10 isolated trees from four sites, determined their sources of origin, and estimated dispersal distances. Almost all drift propagules and all isolated trees came from the nearest sources. This research suggests that hurricanes are a prerequisite for poleward range expansion of a coastal tree species and that storms can shape the expanding gene pool by providing almost exclusively range‐margin genotypes. These insights and empirical estimates of hurricane‐driven dispersal distances should improve our ability to forecast distributional shifts of coastal species.  相似文献   

2.
Common killifish, Fundulus heteroclitus, are found in marshes and estuaries along the Atlantic coast of North America from Newfoundland to Florida. Although these habitats are highly productive, they are also characterized by variation in a number of abiotic stressors, including temperature, salinity, oxygen, and anthropogenic toxicants, which vary substantially in both space and time. In order to survive in these habitats, killifish must be able to cope with these stressors, both individually and in combination. There is substantial evidence to suggest that populations of F. heteroclitus have undergone local adaptation to multiple abiotic stressors, including temperature, salinity, and toxicants, but most studies have examined the effects of single stressors in isolation. Here I review some of the studies on local adaptation in F. heteroclitus, focusing on the molecular basis of local adaptation to abiotic stressors, and the acute responses to these stressors both singly and in combination. This work demonstrates that there are substantial interactions between the responses to both natural and anthropogenic stressors at the cellular level.  相似文献   

3.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

4.
A tree species replacement sequence for dry broadleaved forests (tropical hardwood hammocks) in the upper Florida Keys was inferred from species abundances in stands abandoned from agriculture or other anthropogenic acitivities at different times in the past. Stands were sampled soon after Hurricane Andrew, with live and hurricane‐killed trees recorded separately; thus it was also possible to assess the immediate effect of Hurricane Andrew on stand successional status. We used weighted averaging regression to calculate successional age optima and tolerances for all species, based on the species composition of the pre‐hurricane stands. Then we used weighted averaging calibration to calculate and compare inferred successional ages for stands based on (1) the species composition of the pre‐hurricane stands and (2) the hurricane‐killed species assemblages. Species characteristic of the earliest stages of post‐agricultural stand development remains a significant component of the forest for many years, but are gradually replaced by taxa not present, even as seedlings, during the first few decades. This compositional sequence of a century or more is characterized by the replacement of deciduous by evergreen species, which is hypothesized to be driven by increasing moisture storage capacity in the young organic soils. Mortality from Hurricane Andrew was concentrated among early‐successional species, thus tending to amplify the long‐term trend in species composition.  相似文献   

5.
Germination response following various periods of cold treatment and seedling response to temperature, daylength, and salinity were studied for several Atlantic and Gulf coasts populations of Uniola paniculata L. Results indicated that Atlantic coast Florida populations did not require cold treatment prior to germination at 95–65 F, but that populations from Virginia and North Carolina did. Gulf coast populations exhibited a germination response intermediate between those just mentioned. Seedling studies revealed that alternating diurnal thermoperiods with daytime temperatures of 80 F and above produced good vegetative growth in all populations with little preference for either short- or long-day conditions. Gulf coast populations produced the most biomass under all treatment conditions. Seedlings from a North Carolina and a Florida population indicated no difference in substrate salt tolerance. Salt tolerance was reduced in the higher temperature thermoperiod for both populations. Seedlings from these two populations produced more biomass in a salt spray treatment than in substrate salinity treatments.  相似文献   

6.
I compared life-history traits and self-fertilization rates in greenhouse culture of native Spartina alterniflora with an invasive population from a low-density Pacific estuary to see whether plants in the novel r-selective regime exhibit early reproduction, greater self-compatibility and high reproductive effort putting individuals at greater risk of death. Plants were grown from seed collected from the Atlantic and Gulf coasts of North America and a population introduced approximately 100 years ago to Willapa Bay, Washington, USA that has expanded to cover over ca. 6000 hectares. Pacific marshes have almost no native emergent vascular plants in the intertidal habitat, offering a virtually empty niche for invasive S. alterniflora. The low-density plants at the leading edge of this rapidly expanding population suffer a severe Allee effect of greatly reduced fecundity, caused by pollen limitation, compared to high-density areas. I found 99% of the invasive plants initiated reproduction in the first year of this study, while only 52% of the native range plants did so in the first year, followed by 34% in the second and 14% of native plants had not initiated reproduction after three years. The invasive plants had more than twice the reproductive effort of the native plants. Plants with the highest reproductive effort in the first year of growth died regardless of coastal site of origin, although nearly all of those that died over two years were invasive Pacific plants (27%). The invaders set two times the seed as the natives under forced selfing, suggesting greater self-compatibility or reproductive effort. These results suggest either a founding and bottleneck event and/or the invasive population has evolved from the long-lived, predominantly self-incompatible, K-selected state of the probable invasive propagules originating in dense, competitive native marshes.Co-ordinating editor: I. Olivieri  相似文献   

7.
The fundamental niche of many species is shifting with climate change, especially in sub‐arctic ecosystems with pronounced recent warming. Ongoing warming in sub‐arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonising tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species‐specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large‐coned and ‐seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on predispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems.  相似文献   

8.
Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze‐free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter‐temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high‐latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high‐ and low‐marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological communities requires incorporating context‐dependent biotic interactions into species range models.  相似文献   

9.
We examined the immediate effects of a hurricane (Hurricane Andrew, August 1992) in a coastal landscape in sub-tropical Florida, and then monitored stand recovery in Fringe mangrove sites of different productive capacity for 9 years after the disturbance. Structural impacts of the hurricane were confined almost entirely to forests within 200–300 m of the coast. Mortality and damage were concentrated on canopy individuals. Following the hurricane, rapid canopy recovery and the early onset of competition among Fringe forest stems, as evidenced by relatively high mortality of smaller individuals, magnified the initial dominance of hurricane survivors and early-established seedlings over later cohorts, and limited recruitment to the brief period prior to canopy closure. Changes in the relative abundance of the two dominant mangrove species following disturbance varied strongly along the productivity gradient. The shade-tolerant Rhizophora mangle L. generally became the overwhelming canopy dominant in the competitive environment of the recovering Coastal Fringe forest following hurricane, but the shade-intolerant Laguncularia racemosa (L.) C.F. Gaertn was better represented in less productive Interior Fringe sites, where canopy closure was delayed. Site productivity is an important determinant of the success of mangrove species during post-hurricane stand development, and consequently of the zonation of communities in the coastal landscape.  相似文献   

10.
A Suite of Adaptations for Intertidal Spawning   总被引:1,自引:0,他引:1  
Salt marshes and similar tide-dominated habitats present anunusual challenge for reproduction of resident aquatic organisms.Strong currents, siltation and hypoxia can potentially contributeto reproductive failure through mortality of the eggs or flushingof the eggs and larvae from the habitat. Fundulus heteroclitus,a small brackish water killifish, is a common resident of tidalmarshes along the east coast of North America from Newfoundlandto Florida. The reproductive strategy of this and related speciesis based on aerial incubation of eggs in the high intertidalzone. The eggs are resistant to desiccation and, when fullydeveloped, hatch on immersion. Copulatory behavior and anatomyof accessory reproductive structures are adapted to placementof eggs in protected incubation sites. The gonads of both malesand females mature rhythmically with an endogenous circasemilunarperiod, which is synchronized with the "spring" tides of newand full moons. Spawning occurs on high tides. Embryos developin 9–15 days, and usually hatch on the succeeding springtide series. Reproductive cyclicity in F. heteroclitus and relatedfishes ensures that spawning fish will have access to the highintertidal zone, thereby permitting aerial incubation of eggs.  相似文献   

11.
Sexual reproduction shuffles genetic variation, potentially enhancing the evolutionary response to environmental change. Many asexual organisms respond to stress by generating facultative sexual reproduction, presumably as a means of escaping the trap of low genetic diversity. Self-fertilizing organisms are subject to similar genetic limitations: the consistent loss of genetic diversity within lineages restricts the production of variation through recombination. Selfing organisms may therefore benefit from a similar shift in mating strategy during periods of stress. We determined the effects of environmental stress via starvation and passage through the stress-resistant dauer stage on mating system dynamics of Caenorhabditis elegans , which reproduces predominantly through self-fertilization but is capable of outcrossing in the presence of males. Starvation elevated male frequencies in a strain-specific manner through differential male survival during dauer exposure and increased outcrossing rates after dauer exposure. In the most responsive strain, the mating system changed from predominantly selfing to almost exclusively outcrossing. Like facultative sex in asexual organisms, facultative outcrossing in C. elegans may periodically facilitate adaptation under stress. Such a shift in reproductive strategy should have a major impact on evolutionary change within these populations and may be a previously unrecognized feature of other highly selfing organisms.  相似文献   

12.
In the present study, we investigate the effects of food quality (with three distinct algal diets) and quantity (high vs. low carbon and nitrogen contents) and competition (with natural polychaete competitor, Marenzelleria spp) on the semelparous amphipod Monoporeia affinis fitness and reproduction. Contrary to other studies on this species, our results showed that amphipod females have the ability to adjust their offspring investment when conditions were significantly altered before mating in terms of food quantity, while food quality was of less importance. In fact, there was only a low beneficial effect on amphipod reproduction and embryonic development of a presumed high quality diatom diet. Also, the presence of a natural competitor did not affect amphipod reproductive outcome. The results are viewed in the context of a dramatic decline observed on the amphipod populations in the Gulf of Bothnia. Though, several plausible hypotheses have been suggested for the decline, including competition, new anthropogenic substances, hypoxia and predation, we hypothesize that the population decline is related to food shortage and malnutrition due to an increased percentage low quality terrestrial carbon (rich in humus) from river outflow into the Gulf of Bothnia. Concomitantly, the bacterial food web was enhanced, which has a lower trophic efficiency. We also suggest that a secondary effect of malnutrition is an increased susceptibility to other types of stressors such as contaminants and parasites.  相似文献   

13.
Seagrass are under great stress in the tropical coast of Asia, where Enhalus acoroides is frequently the dominant species with a large food web. Here, we investigate the question of the fine‐scale genetic structure of this ecologically important foundation species, subject to severe anthropogenic disturbance in China. The genetic structure will illuminate potential mechanisms for population dynamics and sustainability, which are critical for preservation of biodiversity and for decision‐making in management and restoration. We evaluated the fine‐scale spatial genetic structure (SGS) and flowering output of E. acoroides, and indirectly estimated the relative importance of sexual versus asexual reproduction for population persistence using spatial autocorrelation analysis. Results reveal high clonal diversity for this species, as predicted from its high sexual reproduction output. The stronger Sp statistic at the ramet‐level compared with genet‐level indicates that clonality increases the SGS pattern for E. acoroides. Significant SGS at the genet‐level may be explained by the aggregated dispersal of seed/pollen cohorts. The estimated gene dispersal variance suggests that dispersal mediated by sexual reproduction is more important than clonal growth in this study area. The ongoing anthropogenic disturbance will negatively affect the mating pattern and the SGS patterns in the future due to massive death of shoots, and less frequency of sexual reproduction.  相似文献   

14.
In many taxa, reproductive performance increases throughout the lifespan and this may occur in part because older adults invest more in reproduction. The mechanisms that facilitate an increase in reproductive performance with age, however, are poorly understood. In response to stressors, vertebrates release glucocorticoids, which enhance survival but concurrently shift investment away from reproduction. Consequently, when the value of current reproduction is high relative to the value of future reproduction and survival, as it is in older adults, life history theory predicts that the stress response should be suppressed. In this study, we tested the hypothesis that older parents would respond less strongly to a stressor in a natural, breeding population of common terns (Sterna hirundo). Common terns are long-lived seabirds and reproductive performance is known to increase throughout the lifespan of this species. As predicted, the maximum level of glucocorticoids released in response to handling stress decreased significantly with age. We suggest that suppression of the stress response may be an important physiological mechanism that facilitates an increase in reproductive performance with age.  相似文献   

15.
Few hurricanes affect intact stands of subtropical pines. We examined effects of winds in the eyewalls of Hurricane Andrew, where wind speeds were >200 km h–1, on all remaining large mainland stands of Pinus elliottii var. densa (south Florida slash pine) on limestone outcroppings (rocklands) in the everglades region of southern Florida. We measured densities and sizes of trees and assessed damage and mortality in plots in old-growth stands in the Lostman's Pines (LOP) region of Big Cypress National Preserve and in second-growth stands in the Pines West (PIW) and Long Pine Key (LPK) regions of Everglades National Park. We also examined age-size relationships using sections from trees killed by the hurricane in LOP and LPK. We used the data to predict effects of recurrent hurricanes on the structure and dynamics of the old-growth stand and to compare effects of hurricanes on old- and second-growth stands.Slash pine was resistant to hurricane winds. Most trees in stands (68–76%) were not severely damaged; mortality in the three regions averaged 17–25% shortly after the hurricane and 3–7% during the following year. Mortality was positively associated with tree size; mean tree sizes decreased and size-selective thinning occurred in all stands. Nonetheless, local mortality ranged from 3–4% to 50–60% among plots in all stands. Such local variation in mortality resulted from clustering of large trees, especially in old-growth stands, and from microbursts during the hurricane, which affected all stands. Recurrent, intense hurricanes are predicted to kill larger trees, slowly opening new patches and increasing sizes of extant patches, thus resulting in almost continual presence of openings suitable for recruitment in old-growth stands. Age-size relationships also indicated that large trees in old-growth stands may survive 2–3 centuries. The combination of frequent openings and wind resistance of large trees is predicted to result in old-growth stands that are highly uneven aged, with trees locally distributed in similar-aged patches. The extent to which such stands deviate from demographic equilibrium, as well as turnover rates within stands, are likely to increase as the frequency of recurrent, intense hurricanes increases.Damage and mortality differed in old- and second-growth stands. Large trees were more, but small trees less likely to be damaged in old- than second-growth stands. In contrast, mortality was significantly lower in old- (LOP: 16.9% ± 3.1 [mean ± s.e.]) than second-growth stands (PIW: 22.5% ± 2.0; LPK: 25.2% ± 2.7). Total hurricane-related mortality was 30–60% higher in second- than old-growth stands. Size class structure, more uneven in old- than second growth stands prior to the hurricane, diverged even more afterwards. Hurricane Andrew removed  相似文献   

16.
Ecosystems face multiple anthropogenic threats globally, and the effects of these environmental stressors range from individual‐level organismal responses to altered system functioning. Understanding the combined effects of stressors on process rates mediated by individuals in ecosystems would greatly improve our ability to predict organismal multifunctionality (e.g. multiple consumer‐mediated functions). We conducted a laboratory experiment to test direct and indirect, as well as immediate and delayed effects of a heat wave (pulsed stress) and micropollutants (MPs) (prolonged stress) on individual consumers (the great pond snail Lymnaea stagnalis) and their multifunctionality (i.e. consumption of basal resources, growth, reproduction, nutrient excretion and organic‐matter cycling). We found that stressful conditions increased the process rates of multiple functions mediated by individual consumers. Specifically, the artificial heat wave increased process rates in the majority of the quantified functions (either directly or indirectly), whereas exposure to MPs increased consumption of basal resources which led to increases in the release of nutrients and fine particulate organic matter. Moreover, snails exposed to a heat wave showed decreased reproduction and nutrient excretion after the heat‐wave, indicating the potential for ecologically relevant delayed effects. Our study indicates that the immediate and delayed effects of stressors on individual organisms may directly and indirectly impact multiple ecosystem functions. In particular, delayed effects of environmental stress on individual consumers may cumulatively impede recovery due to decreased functioning following a perturbation. Reconciling these results with studies incorporating responses at higher levels of biological complexity will enhance our ability to forecast how individual responses upscale to ecosystem multifunctionality.  相似文献   

17.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

18.
19.
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, or other stressors. In coastal areas of the southeastern United States (USA), many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. We provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short‐term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico's coast in the panhandle region of Florida, received storm surge that was 3.0–3.6 m (NAVD88) above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally threatened frosted flatwoods salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds measured varied from 80 to 23,100 µS/cm, compared to 75 to 445 µS/cm in spring 2018. For 17 overwashed wetlands that were measured in both spring and fall 2018, posthurricane conductance observations were, on average, more than 90 times higher than in the previous spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non‐overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane‐prone regions.  相似文献   

20.
Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号