首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Supra-agonist peptides enhance the reactivation of memory CTL responses   总被引:2,自引:0,他引:2  
Single amino acid substitutions at TCR contacts may transform a natural peptide Ag in CTL ligands with partial agonist, antagonist, or null activity. We obtained peptide variants by changing nonanchor amino acid residues involved in MHC class I binding. These peptides were derived from a subdominant HLA-A2-presented, latent membrane protein 2-derived epitope expressed in EBV-infected cells and in EBV-associated tumors. We found that small structural changes produced ligands with vastly different activities. In particular, the variants that associated more stably to HLA-A2/molecules did not activate any CTL function, behaving as null ligands. Interestingly, T cell stimulations performed with the combination of null ligands and the natural epitope produced significantly higher specific CTL reactivation than reactivation of CTLs induced by the wild-type epitope alone. In addition, these particular variants activated memory CTL responses in the presence of concentrations of natural epitope that per se did not induce T cell responses. We show here that null ligands increased ZAP-70 tyrosine kinase activation induced by the natural epitope. Our results demonstrate for the first time that particular peptide variants, apparently behaving as null ligands, interact with the TCR, showing a supra-agonist activity. These variant peptides did not affect the effector T cell functions activated by the natural epitope. Supra-agonist peptides represent the counterpart of antagonists and may have important applications in the development of therapeutic peptides.  相似文献   

2.
3.
Although CD8+ cytotoxic T lymphocytes (CTLs) are protective in HIV-1 infection, the factors determining their antiviral efficiency are poorly defined. It is proposed that Gag targeting is superior because of very early Gag epitope presentation, allowing early killing of infected cells before Nef-mediated downregulation of human leukocyte antigen class I (HLA-I). To study Gag epitope presentation kinetics, three epitopes (SL977-85, KF11162-172, and TW10240-249) were genetically translocated from their endogenous location in the Rev-dependent (late) gag gene into the Rev-independent (early) nef gene with concomitant mutation of the corresponding endogenous epitopes to nonrecognized sequences. These viruses were compared to the index virus for CTL-mediated suppression of replication and the susceptibility of this antiviral activity to Nef-mediated HLA-I downregulation. SL9-specific CTLs gained activity after SL9 translocation to Nef, going from Nef sensitive to Nef insensitive, indicating that translocation accelerated infected cell recognition from after to before HLA-I downregulation. KF11-specific CTL antiviral activity was unchanged and insensitive to HLA-I downregulation before and after KF11 translocation, suggesting that already rapid recognition of infected cells was not accelerated. However, TW10-specific CTLs that were insensitive to Nef at the baseline became sensitive with reduced antiviral activity after translocation, indicating that translocation retarded epitope expression. Cytosolic peptide processing assays suggested that TW10 was inefficiently generated after translocation to Nef, compared to SL9 and KF11. As a whole, these data demonstrate that epitope presentation kinetics play an important role in CTL antiviral efficiency, that Gag epitopes are not uniformly presented early, and that the epitope context can play a major role in presentation kinetics.  相似文献   

4.
High avidity cytotoxic T lymphocytes (CTL) are important in viral clearance and anti-tumor immunity, however, mechanisms for their optimal generation and maintenance in vivo remain unclear. Immunizing mice with an antibody-DNA vaccine encoding a single CTL epitope, induces a 100 fold higher avidity response than peptide vaccination with the identical epitope. The high avidity response is retained into memory and can be efficiently reactivated with an antibody-DNA boost. In contrast, reactivation of high avidity CTL with peptide, stimulated responses with a significant drop in avidity, suggesting loss or conversion of the high avidity CTL to lower avidity. Similarly, high avidity T cells maintained ex vivo were exquisitely sensitive to signaling with low doses of peptide (1 ng/ml) giving optimal TCR stimulation and resulting in retained avidity, proliferation and ability to kill specific targets. In contrast, high avidity T cells maintained ex vivo with supraoptimal TCR stimulation (10 μg/ml peptide) resulted in reduced avidity and failure to kill tumor cells. They also failed to proliferate, showed a significant increase in apoptosis and expressed high levels of the exhaustion marker programmed death-1 (PD-1) and low levels of the lymphocyte-activation gene 3 (LAG-3). This suggests high avidity T cells are recruited to the memory pool but can be lost by supraoptimal stimulation in vitro and in vivo. This is characterized by loss of function and an increase in cell death. The remaining CTL, exhibit low functional avidity that is reflected in reduced anti-tumor activity. This could contribute to failure of the immune system to control the growth of tumors and has implications for vaccination strategies and adoptive transfer of T cells.  相似文献   

5.
CD8+ CTL responses are important for the control of HIV-1 infection. The immunodominant HLA-A2-restricted Gag epitope, SLYNTVATL (SL9), is considered to be a poor immunogen because reactivity to it is rare in acute infection despite its paradoxical dominance in patients with chronic infection. We have previously reported SL9 to be a help-independent epitope in that it primes highly activated CTLs ex vivo from CD8+ T cells of seronegative healthy donors. These CTLs produce sufficient cytokines for extended autocrine proliferation but are sensitive to activation-induced cell death, which may cause them to be eliminated by a proinflammatory cytokine storm. Here we identified an agonist variant of the SL9 peptide, p41 (SLYNTVAAL), by screening a large synthetic combinatorial nonapeptide library with ex vivo-primed SL9-specific T cells. p41 invariably immunized SL9-cross-reactive CTLs from other donors ex vivo and H-2Db beta2m double knockout mice expressing a chimeric HLA-A*0201/H2-Db MHC class I molecule. Parallel human T cell cultures showed p41-specific CTLs to be less fastidious than SL9-CTLs in the level of costimulation required from APCs and the need for exogenous IL-2 to proliferate (help dependent). TCR sequencing revealed that the same clonotype can develop into either help-independent or help-dependent CTLs depending on the peptide used to activate the precursor CD8+ T cells. Although Ag-experienced SL9-T cells from two patients were also sensitive to IL-2-mediated cell death upon restimulation in vitro, the loss of SL9 T cells was minimized with p41. This study suggests that agonist sequences can replace aberrantly immunogenic native epitopes for the rational design of vaccines targeting HIV-1.  相似文献   

6.
The identification of epitopes that elicit cytotoxic T-lymphocyte activity is a prerequisite for the development of cancer-specific immunotherapies. However, especially the parallel characterization of several epitopes is limited by the availability of T cells. Microarrays have enabled an unprecedented miniaturization and parallelization in biological assays. Here, we developed peptide microarrays for the detection of CTL activity. MHC class I-binding peptide epitopes were pipetted onto polymer-coated glass slides. Target cells, loaded with the cell-impermeant dye calcein, were incubated on these arrays, followed by incubation with antigen-expanded CTLs. Cytotoxic activity was detected by release of calcein and detachment of target cells. With only 200,000 cells per microarray, CTLs could be detected at a frequency of 0.5% corresponding to 1,000 antigen-specific T cells. Target cells and CTLs only settled on peptide spots enabling a clear separation of individual epitopes. Even though no physical boundaries were present between the individual spots, peptide loading only occurred locally and cytolytic activity was confined to the spots carrying the specific epitope. The peptide microarrays provide a robust platform that implements the whole process from antigen presentation to the detection of CTL activity in a miniaturized format. The method surpasses all established methods in the minimum numbers of cells required. With antigen uptake occurring on the microarray, further applications are foreseen in the testing of antigen precursors that require uptake and processing prior to presentation.  相似文献   

7.
The adaptive immune system generates CD8 cytotoxic T lymphocytes (CTLs) as a major component of the protective response against viruses. Knowledge regarding the nature of the peptide sequences presented by HLA class I molecules and recognized by CTLs is thus important for understanding host-pathogen interactions. In this study, we focused on identification of a CTL epitope generated from coxsackievirus B4 (CVB4), a member of the enterovirus group responsible for several inflammatory diseases in humans and often implicated in the triggering and/or acceleration of the autoimmune disease type 1 diabetes. We identified a 9-mer peptide epitope that can be generated from the P2C nonstructural protein of CVB4 (P2C(1137-1145)) and from whole virus by antigen-presenting cells and presented by HLA-A2.1. This epitope is recognized by effector memory (gamma interferon [IFN-gamma]-producing) CD8 T cells in the peripheral blood at a frequency of responders that suggests that it is a major focus of the anti-CVB4 response. Short-term CD8 T-cell lines generated against P2C(1137-1145) are cytotoxic against peptide-loaded target cells. Of particular interest, the epitope lies within a region of viral homology with the diabetes-related autoantigen, glutamic acid decarboxylase-65 (GAD(65)). However, P2C(1137-1145)-specific cytotoxic T lymphocyte (CTL) lines were not activated to produce IFN-gamma by the GAD(65) peptide homologue and did not show cytotoxic activity in the presence of appropriately labeled targets. These results describe the first CD8 T-cell epitope of CVB4 that will prove useful in the study of CVB4-associated disease.  相似文献   

8.
RNA viruses undergo rapid sequence variation as the result of error-prone RNA replication mechanisms. When viable mutations arise in RNA regions encoding B or T cell epitopes, mutant viruses that can evade immune detection may be selected. In the carefully studied CTL response to the Gag p11C(C-M) epitope in SIVmac-infected Mamu-A*01(+) rhesus monkeys, it has been shown that CTL recognition of that epitope can occur even in the face of accruing mutations. To explore the underlying mechanism for this breadth of recognition, we have constructed Mamu-A*01 tetramers which discriminate T cells specific for epitope variants. Using these reagents we have defined discrete subsets of p11C(C-M)-specific T cells that cross-react with cells presenting variant peptides. We have found that individual Mamu-A*01(+) monkeys differ functionally in their ability to recognize epitope variants despite consistently strong recognition of the p11C(C-M) epitope. This functional difference is accounted for by the relative number of variant-specific T cells and by differences in the functionally relevant TCR repertoire of the infected monkeys. We have also found that monkeys immunized with DNA vaccine constructs encoding only the wild-type epitope sequence develop p11C(C-M)-specific CTL cross-reactive with variant peptides. Thus, cross-reactive CTL do not merely arise secondary to the emergence and immune presentation of viral CTL escape mutants but rather arise de novo following priming with a dominant epitope peptide sequence. Taken together, our results support the concept that the CTL response to a dominant viral epitope, although highly focused, can be clonally diverse and recognize potential epitope variants.  相似文献   

9.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

10.
In the present study we have identified Epstein-Barr virus isolates which encode variant sequences within an HLA B35-restricted immunodominant cytotoxic T-lymphocyte (CTL) epitope that act as natural antagonists and can inhibit CTL activity on the wild-type epitope. This effect can be demonstrated if the wild-type epitope is presented as a synthetic peptide or when processed from a full-length Epstein-Barr virus protein expressed by recombinant vaccinia constructs. However, this antagonistic effect was only selectively seen with some CTL clones, while a strong agonistic effect was evident for other clones in the presence of the same variant peptide. The data presented in this study strongly suggest that it is unlikely that the variant viruses can completely antagonize a virus-specific CTL response by this mechanism since the host immune response is capable of generating CTLs expressing a diverse array of T-cell receptors. Moreover, many of these CTLs can recognize the variant sequences as efficiently as wild-type epitope.  相似文献   

11.
Cytotoxic chemotherapies may expose the immune system to high levels of tumor antigens and expand the CD8+ T-cell response to include weak or subdominant antigens. Here, we evaluated the in vivo CTL response to tumor antigens using a murine mesothelioma tumor cell line transfected with a neotumor antigen, ovalbumin, that contains a known hierarchy of epitopes for MHC class I molecules. We show that as tumors progress, effector CTLs are generated in vivo that focus on the dominant epitope SIINFEKL, although a weak response was seen to one (KVVRFDKL) subdominant epitope. These CTLs did not prevent tumor growth. Cisplatin treatment slowed tumor growth, slightly improved in vivo SIINFEKL presentation to T cells and reduced SIINFEKL-CTL activity. However, the CTL response to KVVRFDKL was amplified, and a response to another subdominant epitope, NAIVFKGL, was revealed. Similarly, gemcitabine cured most mice, slightly enhanced SIINFEKL presentation, reduced SIINFEKL-CTL activity yet drove a significant CTL response to NAIVFKGL, but not KVVRFDKL. These NAIVFKGL-specific CTLs secreted IFN?? and proliferated in response to in vitro NAIVFKGL stimulation. IL-2 treatment during chemotherapy refocused the response to SIINFEKL and simultaneously degraded the cisplatin-driven subdominant CTL response. These data show that chemotherapy reveals weaker tumor antigens to the immune system, a response that could be rationally targeted. Furthermore, while integrating IL-2 into the chemotherapy regimen interfered with the hierarchy of the response, IL-2 or other strategies that support CTL activity could be considered upon completion of chemotherapy.  相似文献   

12.
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen presenting cells to cytotoxic T lymphocytes (CTLs). Liposomal form of immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus exhibited highly efficient antiviral CTL responses in immunized mice. In this study, we coupled 15 highly conserved immunodominant CTL epitope peptides derived from hepatitis C virus (HCV) to the surface of liposomes. We also emulsified the peptides in incomplete Freund’s adjuvant, and compared the immune responses of the two methods of presenting the peptides by cytotoxicity induction and interferon-gamma (IFN-γ) production by CD8+ T cells of the immunized mice. We noticed significant variations of the immunogenicity of each peptide between the two antigen delivery systems. In addition, the immunogenicity profiles of the peptides were also different from those observed in the mice infected with recombinant adenoviruses expressing HCV proteins as previously reported. Induction of anti-viral immunity by liposomal peptides was tested by the challenge experiments using recombinant vaccinia viruses expressing corresponding HCV epitopes. One Db-restricted and three HLA-A*0201-restricted HCV CTL epitope peptides on the surface of liposomes were found to confer complete protection to immunized mice with establishment of long-term memory. Interestingly, their protective efficacy seemed to correlate with the induction of IFN-γ producing cells rather than the cytotoxicity induction suggesting that the immunized mice were protected through non-cytolytic mechanisms. Thus, these liposomal peptides might be useful as HCV vaccines not only for prevention but also for therapeutic use.  相似文献   

13.
Cytotoxic T lymphocytes (CTLs) are important agents in the control of intracellular pathogens, which specifically recognize and kill infected cells. Recently developed experimental methods allow the estimation of the CTL''s efficacy in detecting and clearing infected host cells. One method, the in vivo killing assay, utilizes the adoptive transfer of antigen displaying target cells into the bloodstream of mice. Surprisingly, killing efficacies measured by this method are often much higher than estimates obtained by other methods based on, for instance, the dynamics of escape mutations. In this study, we investigated what fraction of this variation can be explained by differences in peptide loads employed in in vivo killing assays. We addressed this question in mice immunized with lymphocytic choriomeningitis virus (LCMV). We conducted in vivo killing assays varying the loads of the immunodominant epitope GP33 on target cells. Using a mathematical model, we determined the efficacy of effector and memory CTL, as well as CTL in chronically infected mice. We found that the killing efficacy is substantially reduced at lower peptide loads. For physiological peptide loads, our analysis predicts more than a factor 10 lower CTL efficacies than at maximum peptide loads. Assuming that the efficacy scales linearly with the frequency of CTL, a clear hierarchy emerges among the groups across all peptide antigen concentrations. The group of mice with chronic LCMV infections shows a consistently higher killing efficacy per CTL than the acutely infected mouse group, which in turn has a consistently larger efficacy than the memory mouse group. We conclude that CTL killing efficacy dependence on surface epitope frequencies can only partially explain the variation in in vivo killing efficacy estimates across experimental methods and viral systems, which vary about four orders of magnitude. In contrast, peptide load differences can explain at most two orders of magnitude.  相似文献   

14.
Following infection of the H-2d mouse by lymphocytic choriomeningitis virus, the newly generated cytotoxic T lymphocyte (CTL) response is focused to a single 9-amino-acid peptide sequence (epitope) of the virus. More than 96% of the primary, secondary, and clonal CTL respond to this lymphocytic choriomeningitis virus nucleoprotein epitope. This unique system affords the opportunity to evaluate the T-cell response to a single viral CTL epitope in a case in which the outcome of infection, either viral clearance or host death, is mediated by the CTLs. Specifically, the molecular structure of the T-cell receptors (TCRs) of CTLs responding to this epitope was analyzed. By using an anchored polymerase chain reaction, the TCR chains of three CTL clones cDNAs were amplified, sequenced, and found to have unique V alpha of V beta chains relative to each other as well as to lack restriction to any particular variable chain. These data indicate that the highly diverse antiviral CTL response is pleomorphic and probably provides an advantage to the host as it limits the emergence of viral variants that could more easily arise if the TCR response were homogeneous.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) infection triggers a cytotoxic T-lymphocyte (CTL) response mediated by CD8(+) and perhaps CD4(+) CTLs. The mechanisms by which HIV-1 escapes from this CTL response are only beginning to be understood. However, it is already clear that the extreme genetic variability of the virus is a major contributing factor. Because of the well-known ability of altered peptide ligands (APL) to induce a T-cell receptor (TCR)-mediated anergic state in CD4(+) helper T cells, we investigated the effects of HIV-1 sequence variations on the proliferation and cytotoxic activation of a human CD4(+) CTL clone (Een217) specific for an epitope composed of amino acids 410 to 429 of HIV-1 gp120. We report that a natural variant of this epitope induced a functional anergic state rendering the T cells unable to respond to their antigenic ligand and preventing the proliferation and cytotoxic activation normally induced by the original antigenic peptide. Furthermore, the stimulation of Een217 cells with this APL generated altered TCR-proximal signaling events that have been associated with the induction of T-cell anergy in CD4(+) T cells. Importantly, the APL-induced anergic state of the Een217 T cells could be prevented by the addition of interleukin 2, which restored their ability to respond to their nominal antigen. Our data therefore suggest that HIV-1 variants can induce a state of anergy in HIV-specific CD4(+) CTLs. Such a mechanism may allow a viral variant to not only escape the CTL response but also facilitate the persistence of other viral strains that may otherwise be recognized and eliminated by HIV-specific CTLs.  相似文献   

16.
The identification of novel cytotoxic T lymphocyte (CTL) epitopes is important to analysis of the involvement of CD8(+) T cells in Mycobacterium tuberculosis infection as well as to the development of peptide vaccines. In this study, a novel CTL epitope from region of difference 11 encoded antigen Rv3425 was identified. Epitopes were predicted by the reversal immunology approach. Rv3425-p118 (LIASNVAGV) was identified as having relatively strong binding affinity and stability towards the HLA-A*0201 molecule. Peripheral blood mononuclear cells pulsed by this peptide were able to release interferon-γ in healthy donors (HLA-A*02(+) purified protein derivative(+)). In cytotoxicity assays in vitro and in vivo, Rv3425-p118 induced CTLs to specifically lyse the target cells. Therefore, this epitope could provide a subunit component for designing vaccines against Mycobacterium tuberculosis.  相似文献   

17.
Under optimal Ag stimulation, CTL become functional effector and memory T cells. Professional APCs (pAPC) are considered essential for the activation of CTL, due to their unique capacity to provide costimulation and present exogenous Ags through MHC class I molecules. In this study, we report a novel means by which Th lymphocytes acquire and present MHC class I determinants to naive CTL. Although previous studies have looked at T cell Ag presentation to activated T cells, this study presents the first example of Ag presentation by Th cells to naive CTL. We report that activated Th cells can function as effective pAPC for CTL. Our results show that: 1) In addition to acquisition of cell surface molecules, including MHC class I/peptide complexes, from pAPC, Th cells can acquire and present MHC class I-binding peptides through TCR-MHC class II interactions with pAPC; 2) the acquired Ag can be functionally presented to CTL; and 3) Ag presentation by Th cells induces naive CTL to proliferate and preferentially differentiate into cells that phenotypically and functionally resemble central memory T cells. These findings suggest a novel role of Th cells as pAPC for the development of memory immune responses.  相似文献   

18.
DNA vaccination is a simple and efficient method for the induction of cytotoxic T lymphocytes (CTLs). In the present study, we have examined the effect of the mutations of each of the 12 amino acids of the HBsAg Ld-restricted CTL epitope on the ability of the modified proteins to induce CTLs after DNA-based immunization. Replacement of glutamine or serine by alanine codons in the whole envelope gene created a protein that induced higher CTL activity against cells bearing the wildtype peptide-MHC complex than against the wildtype sequence itself. These results represent the first example of immunogenic mutant sequences (superagonists) that induce higher CTL activity against the wildtype CTL epitope than does the wildtype protein. Because the entire mutant protein is being expressed from the modified plasmid, any of the various steps in epitope processing could be affected by the mutations and lead to increased class I immunogenicity of the peptide sequence.  相似文献   

19.
The underlying generic properties of alphabeta TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV. Interestingly, the response was characterized by highly restricted TCR beta-chain usage in both HLA-B*3501+ and HLA-B*3508+ individuals; however, this conserved TRBV9+ beta-chain was associated with distinct TCR alpha-chains depending upon the HLA-B*35 allele expressed by the virus-exposed host. Functional assays confirmed that TCR alpha-chain usage determined the HLA restriction of the CTLs. Structural studies revealed significant differences in the mobility of the peptide when bound to HLA-B*3501 or HLA-B*3508. In HLA-B*3501, the bulged section of the peptide was disordered, whereas in HLA-B*3508 the bulged epitope adopted an ordered conformation. Collectively, these data demonstrate not only that mobile MHC-bound peptides can be highly immunogenic but can also stimulate an extremely biased TCR repertoire. In addition, TCR alpha-chain usage is shown to play a critical role in controlling MHC restriction between closely related allomorphs.  相似文献   

20.
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号