首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The human neuroblastoma cell line SH-SY5Y (ATCC: CRL-2266) is widely used as a neural cellular model system. The hitherto existing proteome data (115 proteins) are here extended. A total of 1103 unique proteins of this cell line were identified using 2D-LC combined with MALDI-TOF/TOF-MS, SDS-PAGE with nano-LC-MS/MS, N-terminal COFRADIC analysis with nano-LC-MS/MS and 2D-PAGE with MALDI-TOF/TOF-MS peptide mass fingerprinting. The obtained proteome profile of this cell line is discussed.  相似文献   

2.
Towards an analysis of the rice mitochondrial proteome   总被引:32,自引:0,他引:32       下载免费PDF全文
Purified rice (Oryza sativa) mitochondrial proteins have been arrayed by isoelectric focusing/polyacrylamide gel electrophoresis (PAGE), by blue-native (BN) PAGE, and by reverse-phase high-performance liquid chromatography (LC) separation (LC-mass spectrometry [MS]). From these protein arrays, we have identified a range of rice mitochondrial proteins, including hydrophilic/hydrophobic proteins (grand average of hydropathicity = -1.27 to +0.84), highly basic and acid proteins (isoelectric point = 4.0-12.5), and proteins over a large molecular mass range (6.7-252 kD), using proteomic approaches. BN PAGE provided a detailed picture of electron transport chain protein complexes. A total of 232 protein spots from isoelectric focusing/PAGE and BN PAGE separations were excised, trypsin digested, and analyzed by tandem MS (MS/MS). Using this dataset, 149 of the protein spots (the products of 91 nonredundant genes) were identified by searching translated rice open reading frames from genomic sequence and six-frame translated rice expressed sequence tags. Sequence comparison allowed us to assign functions to a subset of 85 proteins, including many of the major function categories expected for this organelle. A further six spots were matched to rice sequences for which no specific function has yet been determined. Complete digestion of mitochondrial proteins with trypsin yielded a peptide mixture that was analyzed directly by reverse-phase LC via organic solvent elution from a C-18 column (LC-MS). These data yielded 170 MS/MS spectra that matched 72 sequence entries from open reading frame and expressed sequence tag databases. Forty-five of these were obtained using LC-MS alone, whereas 28 proteins were identified by both LC-MS and gel-based separations. In total, 136 nonredundant rice proteins were identified, including a new set of 23 proteins of unknown function located in plant mitochondria. We also report the first direct identification, to our knowledge, of PPR (pentatricopeptide repeat) proteins in the plant mitochondrial proteome. This dataset provides the first extensive picture, to our knowledge, of mitochondrial functions in a model monocot plant.  相似文献   

3.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

4.
An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth.  相似文献   

5.
6.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

7.
Intra-amniotic infection (IAI) is associated with preterm birth and perinatal mortality. To identify potential biomarkers, we performed a comprehensive survey of the cervical-vaginal fluid (CVF) proteome from a primate IAI model utilizing multidimensional protein identification technology (LC/LC-MS/MS) and MALDI-TOF-MS analyses. Analyses of CVF proteome identified 205 unique proteins and differential expression of 27 proteins in controls and IAI samples. Protein expression signatures and immunodetection of specific biomarkers identified can be employed for noninvasive detection of IAI.  相似文献   

8.
Human cervico-vaginal fluid (CVF) is a mixture of fluids originating from the vagina, cervix, endometrium, and oviduct. CVF has been shown to play an important role in protecting the vagina from infection. We used "bottom-up" proteomic approaches to characterize the protein repertoire of human CVF. We applied two different sample prefractionation methods, one-dimensional-SDS-PAGE (1D-SDS-PAGE) and strong cation-exchange chromatography, followed by LC-MS/MS and bioinformatic analysis. We identified a total of 685 proteins. Strong cation-exchange chromatography prefractionation resulted in a larger number of proteins identified when compared with 1D-SDS-PAGE. Extracellular or membrane proteins made up 30% of the proteins identified, according to Genome Ontology (GO) classifications. We confirmed the presence of defense-related proteins, such as haptoglobin, defensins, and lactoferrin; and identified new ones such as azurocidin and dermcidin. We also identified many serine and cysteine proteases, including 6 members of the kallikrein family (KLKs 6, 7, 10, 11, 12, and 13). The same KLKs were also confirmed quantitatively by ELISA assays. Knowledge of the CVF proteome will aid in the discovery of potential biomarkers for gynecological malignancies and infections and provide additional clues for its physiological functions.  相似文献   

9.
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.  相似文献   

10.
Mitochondria undertake the process of oxidative phosphorylation yielding ATP for plant cell maintenance and growth. The principles of isolation and fractionation of plant mitochondrial proteins have been improved over decades, and surveys of the mitochondrial proteome in a number of plants species have been performed. Over time, many quantitative analyses of changes in the plant mitochondrial proteome have been performed by 2-D gel analyses revealing the induction, degradation and modification of mitochondrial proteins in responses to mutation, stress and development. Here, we present a saturating MS analysis of 2-D gel separable protein spots from a typical purification of Arabidopsis mitochondria identifying 264 proteins, alongside an LC-MS/MS survey by non-gel methods identifying 220 proteins. This allowed us to characterise the major mitochondrial proteins that are not observed on 2-D gels, the common contaminants and the abundance of the protein machinery of key mitochondrial biochemical pathways, and consider the impact of N-terminal pre-sequence cleavage and phosphorylation as explanations of multiple protein spots and the co-ordinates of proteins on 2-D gels.  相似文献   

11.
Wang W  Guo T  Song T  Lee CS  Balgley BM 《Proteomics》2007,7(8):1178-1187
As demonstrated in this study, a CIEF-based multidimensional separation platform not only is compatible with the detergent-based membrane protein preparation protocol, but also achieves both the largest yeast membrane proteome coverage and the most comprehensive analysis of the yeast proteome to date. By using a 1% false discovery rate for total peptide identifications, a total of 2513 distinct yeast proteins are identified from the SDS-solubilized fraction with an average of 5.4 peptides leading to each protein identification. Among proteins identified from the SDS-solubilized fraction, 407 proteins are predicted to contain at least two or more transmembrane domains using TMHMM (www.cbs.dtu.dk/services/TMHMM-2.0/), corresponding to 46% yeast membrane proteome coverage. Only four additional membrane proteins are identified in the soluble and urea-solubilized fractions, affirming the utility of SDS extraction for enriching the membrane proteome. By combining proteome results obtained from the soluble, urea-solubilized, and SDS-solubilized fractions, a single yeast proteome analysis yields the identification of 3632 distinct yeast proteins, corresponding to 55% theoretical yeast proteome coverage or 70% of proteins predicted to be expressed during log-phase growth in rich media.  相似文献   

12.
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.  相似文献   

13.
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.  相似文献   

14.
Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14 416 confidently identified peptides covering 4294 different proteins with an estimated 10% gene coverage of the human genome. By using the high efficiency CPE, an additional 1096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1390 proteins were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased with regard to protein M(r) , pI, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.  相似文献   

15.
16.
Shed membrane microparticles (MPs) are microvesicles generated from the plasma membrane when cells are submitted to stress conditions. Although MPs reflect the cell state (at least in vitro), little is known on their protein composition. We describe the first set of experiments aiming to characterize the MP proteome. Two ways of triggering MP formation from a T-lymphocytic cell line were analyzed using a 1-D gel approach coupled with LC-MS/MS and the results were compared with those obtained from a classic membrane preparation. In total, 390 proteins were identified in MPs, among which 34% were localized to the plasma membrane. The MPs revealed a broad representation of plasma membrane proteins including 17 hematopoietic clusters of differentiation. This approach was successfully applied to one human chronic B-cell lymphoid malignancy. In all, 413 proteins were identified, including 117 membrane proteins, many of them being pathology associated. The sequence coverage in identified proteins was improved combining both nano-LC-MS/MS and MALDI-MS data. The suppression effect, observed on very complex peptide mixtures, was remediated by chromatographic fractionation. MPs may represent a new tool for studying plasma membrane proteins, displaying the advantages of reproducibility, minimal organelle contamination, and being potentially applicable to most cell types.  相似文献   

17.
Proteomic profiling of human stem cells derived from umbilical cord blood   总被引:2,自引:0,他引:2  
CD34+ preparations from five different umbilical cord samples were compared with respect to their proteome profile using 2-D gel electrophoresis. Fifty-two protein spots were found to match in all preparations referring to the high heterogeneity of such samples indicating a not fully developed (or instable) proteome of stem cells. All matching spots were subjected to in-gel digestion and nano-LC-MS/MS sequence analysis, from which 22 proteins were unambiguously identified.  相似文献   

18.
The mitochondrial proteome and differences associated with salt tolerance have been investigated in Australian commercial varieties of wheat. Mitochondria isolated from shoots were used to generate a wheat mitochondrial reference map; 68 unique wheat mitochondrial proteins were identified from 192 gel spots using 2D PAGE and LC-MS/MS. This analysis also provided MS/MS spectra for 199 proteotypic peptides as a foundation for the development of targeted proteomics to study the respiratory apparatus in wheat. Using this reference map and 2D DIGE, we have found quantitative differences in the shoot mitochondrial proteomes of v. Wyalkatchem and v. Janz, two commercially important wheat varieties that are known from a range of experiments to differ in salinity tolerance. These proteins included Mn-superoxide dismutase (Mn-SOD), cysteine synthase, nucleotide diphosphate kinase, and the voltage dependent anion channel (VDAC). Antibodies to the mitochondrial alternative oxidase (AOX), previously linked to reduced ROS formation from the electron transport chain and salt tolerance in Arabidopsis, also showed a commensurate higher abundance in v. Wyakatchem in both control and salt-treated conditions. Together, the data presented here suggest that differences in mitochondrial ROS defense pathways in the mitochondrial proteomes of key Australian wheat varieties correlate with whole-plant salinity tolerance.  相似文献   

19.
Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.  相似文献   

20.
The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of LC-MS/MS of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS PMF. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号