首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
植物细胞质雄性不育是一种广泛存在于高等植物中的母性遗传性状。细胞质雄性不育不仅为研究核质互作提供了良好材料,同时也是植物杂种优势利用的重要基础,其分子机理是目前研究的重点。多种研究证据表明,线粒体基因与细胞质雄性不育密切相关。随着分子生物学和分子遗传学的不断发展,许多植物的恢复基因已经被定位和克隆,进一步阐明了植物细胞质雄性不育和育性恢复的分子机理。本文综述了近几年植物中细胞质雄性不育和育性恢复相关基因的研究进展,并探讨了细胞质雄性不育/育性恢复系统在育种方面的应用。  相似文献   

2.
油菜细胞质雄性不育不仅是研究核质互作的理想材料,同时也是杂种优势利用的最有效方式之一。目前对油菜细胞质雄性不育的研究主要包括不育基因的来源、不育基因的结构特征、不育基因的作用机理以及育性恢复的分子机制等。对目前国际上主要的油菜细胞质雄性不育类型(pol CMS、nap CMS、kos CMS、ogu CMS和tour CMS)在分子水平上的研究进展进行了综述。包括线粒体不育基因相关区域的确定和结构特点,不育形成的分子机理以及恢复基因的定位和作用机制等。  相似文献   

3.
植物胞质雄性不育及育性恢复的分子机制研究进展(综述)   总被引:3,自引:0,他引:3  
本文从与雄性不育有关的线粒体基因引起雄性不育的机理、雄性不育育性恢复机制以及育性恢复基因的克隆等方面,介绍国内外对植物细胞质雄性不育分子机理的研究进展,并对今后的研究进行讨论。  相似文献   

4.
植物细胞质雄性不育是广泛存在于高等植物中的现象, 其表现为母性遗传、花粉败育, 但雌蕊正常。细胞质雄性不育在杂交种子生产中起着重要作用, 研究其分子作用机制有利于更有效地利用细胞质雄性不育。随着一些不育基因和恢复基因相继被克隆, 人们对一些细胞质雄性不育和恢复系统的分子作用机理已经有一定了解。本文综述了近年来对植物细胞质雄性不育基因和恢复基因作用机理研究的进展。  相似文献   

5.
植物细胞质雄性不育及其育性恢复的分子基础   总被引:4,自引:0,他引:4  
植物细胞质雄性不育是广泛存在于高等植物中的现象,其表现为母性遗传、花粉败育,但雌蕊正常。细胞质雄性不育在杂交种子生产中起着重要作用,研究其分子作用机制有利于更有效地利用细胞质雄性不育。随着一些不育基因和恢复基因相继被克隆,人们对一些细胞质雄性不育和恢复系统的分子作用机理已经有一定了解。本文综述了近年来对植物细胞质雄性不育基因和恢复基因作用机理研究的进展。  相似文献   

6.
植物细胞质雄性不育及其育性恢复的分子生物学研究进展   总被引:3,自引:0,他引:3  
植物细胞质雄性不育(CMS)和恢复系统在作物杂交种子生产中具有重要的意义。综述了目前已发现的与植物CMS相关的线粒体DNA位点,育性恢复基因对CMS相关DNA位点表达的影响,育性恢复基因的分子标记定位、克隆,及育性恢复分子机理等方面的研究进展,并讨论了恢复基因在植物分子育种上的应用。  相似文献   

7.
高等植物胞质雄性不育及育性恢复的分子生物学研究进展   总被引:4,自引:0,他引:4  
综述了几种植物胞质雄性不育的分子机理研究进展,着重介绍了与细胞质雄性不育相关的线粒体连锁位点的分析及育性恢复的几种假说,并对今后的研究进行了讨论。  相似文献   

8.
植物雄性不育基因的研究进展   总被引:1,自引:0,他引:1  
缪颖  陈睦传 《植物学报》2000,17(1):1-10
本文概述了植物雄性核不育基因的分子标记及其定位,综述了植物细胞质雄性不育中不育系与保持系在叶绿体和线粒体基因组的结构、转录和翻译产物方面的差异以及和雄性不育之间的可能关系,以及恢复系中的恢复基因分子水平的研究现状;讨论了环境条件如光周期和温度对雄性不育的影响在分子水平上的研究现状,指出了植物雄性不育基因研究方面存在的问题和解决的思路。  相似文献   

9.
植物雄性不育基因的研究进展   总被引:13,自引:0,他引:13  
本文概述了植物雄性核不育基因的分子标记及其定位,综述了植物细胞质雄性不育中不育系与保持系在叶绿体和线粒体基因组的结构、转录和翻译产物方面的差异以及和雄性不育之间的可能关系,以及恢复系中的恢复基因分子水平的研究现状;讨论了环境条件光周期和温度对雄性不育的影响在分子水平上的研究现状,指出了植物雄性不育基因研究方面存在的问题和解决贩思路。  相似文献   

10.
线粒体反向调控介导高等植物细胞质雄性不育发生机制   总被引:1,自引:0,他引:1  
杨景华  张明方 《遗传》2007,29(10):1173-1181
从高等植物细胞质雄性不育发生的基因调控网络角度出发, 综述了目前高等植物细胞质雄性不育的类型、不育发生相关线粒体因子及核恢复基因对线粒体因子的调控。同时, 结合课题组的研究探讨了线粒体通过可能的核质互作途径反向调控(mitochondrial retrograde regulation, MRR)核基因的表达介导雄性不育发生的分子机制。  相似文献   

11.
Restoration of pollen fertility to cytoplasmic male-sterile common bean by nuclear gene Fr is accompanied by mitochondrial (mt) DNA rearrangements within restored plants. These rearrangements are also observed upon spontaneous cytoplasmic reversion to fertility. An mtDNA fragment of at least 25 kilobases was lost from the genome upon restoration or reversion. This fragment contained DNA segments that were not repeated elsewhere in the genome and, therefore, were not detected within the genome upon fertility restoration. This result suggested that the particular mtDNA configuration absent from restored plants could not be maintained by a constant process of recombination but rather by autonomous replication. No evidence of excision of this region from the mt genome, in the form of a junction fragment associating flanking DNA regions, was detected in fertile restored plants. DNA gel blot hybridization of this mtDNA region, compared with hybridization to related regions of the mitochondrial genome that shared sequence homology, indicated that the mtDNA region associated with sterility was present in lower copy number. These observations, as well as the occurrence of similar or identical rearrangements upon spontaneous cytoplasmic reversion, indicate that the restoration of pollen fertility may be accompanied by loss of an independently replicating subgenomic DNA molecule from the mitochondrial genome.  相似文献   

12.
S. A. Mackenzie 《Genetics》1991,127(2):411-416
Previous investigations into the genetic mechanism of fertility restoration in cytoplasmic male sterile Phaseolus vulgaris suggested that this is a particularly interesting system for the study of nuclear-mitochondrial interactions. This study was conducted to investigate the nature of nuclear-mitochondrial compatibility in fertile accession line G08063, the reported progenitor to the cytoplasmic male sterile line. Results from genetic analysis indicated that fertile line G08063 carried a sterility-inducing cytoplasm with a fertility restoring nuclear genotype. Mitochondrial DNA analysis indicated that the mechanism of fertility restoration by line G08063 was different from that conditioned by Fr, a previously described restorer gene. A mitochondrial DNA sequence associated with sterility and lost upon fertility restoration by nuclear gene Fr was present in the mitochondrial genome of fertile line G08063; this sequence was not carried within the mitochondrial genome of any other P. vulgaris accession line tested.  相似文献   

13.
Cytoplasmic male sterility (CMS) in plants is a maternally inherited inability to produce functional pollen, and is often associated with mitochondrial DNA abnormalities. Specific nuclear loci that suppress CMS, termed as restorers of fertility (Rf), have been identified. Previously, we identified an Rf for the CMS Kosena radish and used genetic analysis to identify the locus and create a contig covering the critical interval. To identify the Rf gene, we introduced each of the lambda and cosmid clones into the CMS Brassica napus and scored for fertility restoration. Fertility restoration was observed when one of the lambda clones was introduced into the CMS B. napus. Furthermore, introduction of a 4.7-kb BamHI/HpaI fragment of the lambda clone is enough to restore male fertility. A cDNA strand isolated from a positive fragment contained a predicted protein (ORF687) of 687 amino acids comprising 16 repeats of the 35-amino acid pentatricopeptide repeat (PPR) motif. Kosena CMS radish plants were found to express an allele of this gene possessing four substituted amino acids in the second and third repeats of the PPR suggesting that the domains formed by these repeats in ORF687 are essential for fertility restoration. Protein levels of the Kosena CMS-associated mitochondrial protein ORF125 were considerably reduced in plants in which fertility was restored, although mRNA expression was normal. Regarding the possible role for PPR-containing proteins in the regulation of the mitochondrial gene, we propose that ORF687 functions either directly or indirectly to lower the levels of ORF125, resulting in the restoration of fertility in CMS plants.  相似文献   

14.
15.
Since plants retain genomes of an extremely large size in mitochondria (200-2,400 kb), and mitochondrial protein complexes are comprised of chimeric structures of nuclear- and mitochondrial-encoded subunits, coordination of gene expression between the nuclei and mitochondria is indispensable for sound plant development. It has been well documented that the nucleus regulates organelle gene expression. This regulation is called anterograde regulation. On the other hand, recent studies have demonstrated that signals emitted from organelles regulate nuclear gene expression. This process is known as retrograde signaling. Incompatibility caused by genome barriers between a nucleus and foreign mitochondria destines the fate of pollen to be dead in cytoplasmic male sterility (CMS), and studies of CMS confirm that pollen fertility is associated with anterograde/retrograde signaling. This review summarizes the current perspectives in CMS and fertility restoration, mainly from the viewpoint of anterograde/retrograde signaling.  相似文献   

16.
17.
The Fr gene in common bean, Phaseolus vulgaris L., is a unique gene for the study of plant nuclear-mitochondrial interactions because it appears to directly influence plant mitochondrial genome structure, resulting in the restoration of pollen fertility in cytoplasmic male sterile plants. This gene action is distinct from other pollen fertility restoration systems characterized to date. As a first step towards the map-based cloning of this unusual nuclear gene, we identified RAPD markers linked to Fr using bulked segregant analysis of near-isogenic lines. Using DNA gel blot hybridization, we localized the identified RAPD markers to a linkage group on the common bean RFLP map and constructed a linkage map of the Fr region using both RAPD markers and RFLP markers. Analysis of the mode of Fr action with the aid of identified Fr-linked DNA markers indicated that Fr functions in a semidominant fashion, showing dosage effect in controlling the dynamics of a heteroplasmic mitochondrial population. We also present our observations on the developmental distinctions, crucial in the accurate mapping of the Fr gene, between spontaneous cytoplasmic reversion and Fr-driven fertility restoration, two phenomena that are phenotypically indistinguishable.  相似文献   

18.
 A spontaneously derived fertile plant was recovered from a petaloid cytoplasmic male-sterile (CMS) carrot inbred line. Genetic analysis indicated a single nuclear gene was responsible for the restoration to fertility. Within a family segregating for the nuclear restorer in combination with the sterility-inducing cytoplasm, fertile plants were recovered that could not restore fertility when crossed to sterile genotypes. Genetic analysis indicated cytoplasmic reversion for fertility, and Southern analysis, comparing mtDNA organization of the fertile revertant and its CMS progenitor, identified mitochondrial genome rearrangements. Hybridization of cosmids representing a 108-kb subgenomic circle of the sterile line to DNA of a fertile maintainer and fertile revertant lines indicated a similar mtDNA organization for these genotypes that was distinct from that of the sterile line. Six restriction fragments totalling 43.2 kb were common to the fertile maintainer and revertant and absent in the sterile; other restriction fragments totalling 38.2 kb were present only for the sterile line. Unique fragments of low stoichiometry, two for the fertile maintainer and three for the revertant, distinguished these lines. The reversion to fertility in the sterile line could have resulted from the amplification of a mitochondrial submolar genome highly homologous to that found in the fertile maintainer line. Received: 4 October 1997/Accepted: 12 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号