首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Glioblastoma (GBM), the most prevalent type of primary intrinsic brain cancer in adults, remains universally fatal despite maximal therapy, including radiotherapy and chemotherapy. Cytotoxic therapy generates double-stranded DNA breaks (DSBs), most commonly repaired by homologous recombination (HR). We hypothesized that cancer cells coopt meiotic repair machinery as DSBs are generated during meiosis and repaired by molecular complexes distinct from genotoxic responses in somatic tissues. Indeed, we found that gliomas express meiotic repair genes and their expression informed poor prognosis. We interrogated the function of disrupted meiotic cDNA1 (DMC1), a homolog of RAD51, the primary recombinase used in mitotic cells to search and recombine with the homologous DNA template. DMC1, whose only known function is as an HR recombinase, was expressed by GBM cells and induced by radiation. Although targeting DMC1 in non-neoplastic cells minimally altered cell growth, DMC1 depletion in GBM cells decreased proliferation, induced activation of CHK1 and expression of p21CIP1/WAF1, and increased RPA foci, suggesting increased replication stress. Combining loss of DMC1 with ionizing radiation inhibited activation of DNA damage responses and increased radiosensitivity. Furthermore, loss of DMC1 reduced tumor growth and prolonged survival in vivo. Our results suggest that cancers coopt meiotic genes to augment survival under genotoxic stress, offering molecular targets with high therapeutic indices.Glioblastomas (GBMs) rank among the deadliest of all human cancers, with only modest improvement in patient survival over recent decades. More than 12 000 GBM patients are diagnosed annually in the United States.1, 2 Despite aggressive treatment consisting of maximal safe surgical resection, concurrent radiotherapy and chemotherapy, and adjuvant chemotherapy, median survival remains dismal at 12–15 months.3, 4 Although numerous molecular targets have been identified in GBM, no molecularly targeted therapy has demonstrated a survival benefit. Radiotherapy remains the cornerstone of post-surgical GBM therapy with modest additional benefit offered by concurrent administration of the oral methylator, temozolomide. However, radioresistance and tumor recurrence is universal in GBM.4, 5, 6 Radiation also damages non-neoplastic brain tissue, resulting in cognitive impairment and decreased quality-of-life.7 Focal high-dose radiation reduces toxicity to non-neoplastic tissue, but tumor invasion into normal brain regions limits the survival benefit of highly focused radiotherapy techniques, like gamma knife and proton beam, establishing a need for improved combinatorial treatments, such as radiosensitizers.8, 9 To date, no radiosensitizer has successfully increased survival with acceptable toxicity in a clinical trial. Based on this background, we sought novel molecular targets that mediate responses to genotoxic stress and have limited function in normal cells.During mitosis, cells inspect the integrity of their DNA and repair replication errors through cell-state and error-specific mechanisms.10 Unrepaired or large regions of DNA damage overwhelm replication mechanisms to induce cell death.10, 11 DNA double-strand breaks (DSBs) are detrimental as they cause large-scale chromosomal rearrangements.10 The homologous recombination (HR) pathway is primarily used to repair DSBs during S- and G2-phases, providing access to both sister and homologous chromosomes as repair templates.7, 12 RADiation sensitive 51 (RAD51) is a key recombinase important in HR and replication fork maintenance, functioning in both mitotic and meiotic cells.7, 12, 13, 14, 15 Phosphorylated RAD51 replaces replication protein A (RPA) upon DNA loading.16 Recombination mediated by RAD51 with the intact DNA template strand results in a relatively error-free repair.12In contrast to mitosis, germ cells undergoing meiosis actively generate genetic diversity through induction of programmed DSBs, which are repaired through HR.17, 18, 19 In meiotic HR, RAD51 functions in conjunction with the meiosis-specific recombinase, disrupted meiotic cDNA1 (DMC1). RAD51 and DMC1 are loaded onto DNA by a meiosis-specific accessory protein complex, homologous-pairing protein 2 (HOP2)–meiotic nuclear divisions 1 (MND1), to promote homologous strand invasion and dissociation-loop (D-loop) formation.20, 21 D-loops formed using the DMC1–RAD51 complex are more resistant to dissociation as opposed to D-loops formed by RAD51 alone, increasing the likelihood of DNA crossover events.20 In addition, DMC1-directed crossovers preferentially utilize the homologous chromosome further increasing genetic variation.22GBM cells commonly harbor genetic lesions that promote unrestrained proliferation but also stimulate genotoxic stress responses. Neoplastic cells do not require perfect fidelity of repair. In fact, dysfunctional repair accelerates genetic evolution of clones, but cancer cells must acquire mechanisms to bypass cell death or senescence in response to exogenous stressors.11, 23 Radiotherapy targets proliferating cancer cells by production of reactive oxygen species, leading to generation of DSBs and activation of the DNA damage response (DDR) pathway.11, 24 DSBs generated as a result of ionizing radiation (IR) are repaired through HR or non-homologous end joining (NHEJ).7, 12, 25, 26 Terminally differentiated neurons are post-mitotic and rely on NHEJ as a means to repair DNA DSBs. Therefore, inhibition of the NHEJ pathway may result in unfavorable normal neural cell toxicity.26The HR pathway is an attractive target as it is linked to increased genetic variation and loss of heterozygosity (LOH).12, 27 Multiple HR checkpoints have been proposed as potential therapeutic targets for GBM.28, 29, 30, 31 Although the prognostic value of RAD51 expression in GBM is unresolved,29, 32, 33 RAD51 is consistently elevated in GBM compared with normal brain.33 Reducing RAD51 expression radiosensitizes GBM cells,29 but may have a limited therapeutic index because of the potentially toxic effects on non-neoplastic cells. In this study, we investigated the aberrant activity of meiotic HR regulators in glioma, focusing on the meiosis-specific DMC1. Activation of meiotic repair genes in neoplastic cells selectively provides tumor cells with a repair mechanism to evade cell death caused by DNA damage, yet increase genetic diversity to drive clonal evolution.  相似文献   

2.
NFBD1 functions in cell cycle checkpoint activation and DNA repair following ionizing radiation (IR). In this study, we defined the NFBD1 as a tractable molecular target to radiosensitize nasopharyngeal carcinoma (NPC) cells. Silencing NFBD1 using lentivirus-mediated shRNA-sensitized NPC cells to radiation in a dose-dependent manner, increasing apoptotic cell death, decreasing clonogenic survival and delaying DNA damage repair. Furthermore, downregulation of NFBD1 inhibited the amplification of the IR-induced DNA damage signal, and failed to accumulate and retain DNA damage-response proteins at the DNA damage sites, which leaded to defective checkpoint activation following DNA damage. We also implicated the involvement of NFBD1 in IR-induced Rad51 and DNA-dependent protein kinase catalytic subunit foci formation. Xenografts models in nude mice showed that silencing NFBD1 significantly enhanced the antitumor activity of IR, leading to tumor growth inhibition of the combination therapy. Our studies suggested that a combination of gene therapy and radiation therapy may be an effective strategy for human NPC treatment.Nasopharyngeal carcinoma (NPC) is a non-lymphomatous, squamous cell carcinoma that occurs in the epithelial lining of the nasopharynx, which is a prevalent tumor in people of southern Chinese ancestry in southern China and Southeast Asia, and the incidence is still increasing.1 Although radiotherapy is routinely used to treat patients with NPC, local recurrences and distant metastasis often occur in 30–40% of NPC patients at advanced staged.2 Thus, new therapeutic strategies are required to improve the poor prognosis of NPC.Among the various types of DNA damage, DNA double-strand breaks (DSBs) are the most serious and require elaborated networks of proteins to signal and repair the damage.3 It has recently been shown that the histone H2A variant H2AX specifically controls the recruitment of DNA repair proteins to the sites of DNA damage.4 H2AX is phosphorylated extensively on a conserved serine residue at its carboxyl terminus in chromatin regions bearing DSBs, which is mediated by members of the phos-phoinositide-3-kinase-related protein kinase (PIKK) family.5, 6 Of these PIKKs, ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylate H2AX in response to DSBs in a partially redundant manner.7, 8 NFBD1 (Nuclear Factor with BRCT Domain Protein 1), also known as MDC1 (mediator of DNA damage checkpoint protein 1), is a recently identified nuclear protein that regulates many aspects of the DNA damage-response pathway, such as intra-S phase checkpoint, G2/M checkpoint, spindle assembly checkpoint and foci formation of NBS/MRE/Rad50 (MRN complex), 53BP1 and BRCA1.9, 10, 11, 12, 13 Human NFBD1 comprises 2089 amino acid residues and has a predicted molecular weight of ∼220 kDa. Motifs found in the protein include an FHA (Forkhead Associated) domain, two BRCT (BRCA1 carboxy terminal) domains and around 20 in terminal repeats of ∼41 amino acid residues each.14 Following DNA damage, NFBD1 serves as a bridging molecule and directly interacts with ATM and phospho-H2AX (γ-H2AX) through its FHA and BRCT domains, respectively, which leads to the expansion of γ-H2AX region surrounding DNA strand breaks and provides docking sites for many DNA damage and repair proteins including the MRN complex, 53BP1, BRCA1, RNF8, RNF4 and so on, ensuring genomics stability.11, 15, 16, 17, 18 In mammalian cells, DSBs are mainly repaired by two mechanisms, homologous recombination (HR) or non-homologous end-joining (NHEJ).19, 20, 21 For NHEJ repair, it is estimated that following exposure to ionizing radiation (IR), 80–90% of the DSBs in G1 are rejoined with fast kinetics in a manner dependent upon the NHEJ core components, Ku, DNA-PKcs, XRCC4 and DNA ligase IV. In contrast, HR predominates in late S- and G2-phase cells, when the sister chromatid is available to act as the template, representing those normally repaired with slow kinetics, require Rad51, Rad52, Rad54, XRCC2, XRCC3, the Rad51 paralogs and the breast cancer susceptibility genes BRCA1 and BRCA2.22, 23, 24, 25, 26Since NFBD1 contains protein–protein interaction domains, and participate in the DNA damage-response (DDR) pathway. However, the mechanism by which NFBD1 regulates so many aspects of the DNA damage-response pathway in NPC cells is not fully understood. In addition, the physiological function of NFBD1 in NPC cells has been not investigated. With these goals in mind, we generated NFBD1-knockdown NPC cells and studied the physiological function of NFBD1 in DDR.  相似文献   

3.
4.
Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation, differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR). In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse effects may be dependent on specific cues in the microenvironment.Ultraviolet (UV)-mediated immunosuppression poses a major risk for skin cancer induction,1, 2 and many have reported that an essential mediator in this process is UV-induced platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine).3, 4, 5 PAF is a phospholipid, first discovered as a secreted component by activated innate immune cells,6, 7 that mediates its activity by binding to a G-protein-coupled receptor.8 It is involved in a variety of mechanisms including the release of histamine in activated leukocytes,9, 10, 11 anaphylaxis, and phagocytosis.12Exposure to low doses of UV radiation activates PAF release by keratinocytes,13, 14 so it is likely that most of the population is regularly exposed to keratinocyte-derived PAF. In previous studies we showed that PAF upregulates both CXCR4 on mast cells and its ligand (CXCL12) on draining lymph node cells, promoting the migration of dermal mast cells from inflamed skin to the lymph nodes.15 Mast cells that reach the draining lymph nodes activate immune suppression by releasing interleukin 10.16 Blocking mast cell migration by using a CXCR4 antagonist, AMD3100, blocks UV-induced immune suppression and the induction of skin cancer.15, 17 No immune suppression is noted when PAF receptor-deficient mice (PAFR-/-) are exposed to UV radiation,4, 5 nor can one reconstitute immune suppression when PAFR-/- mast cells are used to reconstitute mast cell-deficient mice.18 PAF also has a critical role in skin cancer induction and progression,19, 20 and this may reflect its capacity to both induce immune suppression and hamper DNA repair.21Hanahan and Weinberg recognized the important roles inflammation and immune evasion play in the initiation of cancer.22 UV-induced PAF by activating immune suppression, retarding DNA repair and activating inflammation clearly constitutes an important hallmark for cancer induction. Supporting this idea is the observation that PAF is involved in a variety of other cancers besides skin cancer.23, 24, 25, 26, 27 Although we previously demonstrated that PAF suppresses the rate of DNA repair in vivo,21 little is known regarding the mechanisms involved. In this study we performed a series of experiments to determine how PAF affects DNA repair by examining important checkpoints that regulate DNA repair and cell cycle progression. We primarily used mast cells because of the critical role these cells have in UV-induced immune suppression and skin cancer induction,15, 28 and also because the dermis where they reside is targeted by UV-induced PAF.18  相似文献   

5.
6.
Dysferlin deficiency compromises the repair of injured muscle, but the underlying cellular mechanism remains elusive. To study this phenomenon, we have developed mouse and human myoblast models for dysferlinopathy. These dysferlinopathic myoblasts undergo normal differentiation but have a deficit in their ability to repair focal injury to their cell membrane. Imaging cells undergoing repair showed that dysferlin-deficit decreased the number of lysosomes present at the cell membrane, resulting in a delay and reduction in injury-triggered lysosomal exocytosis. We find repair of injured cells does not involve formation of intracellular membrane patch through lysosome–lysosome fusion; instead, individual lysosomes fuse with the injured cell membrane, releasing acid sphingomyelinase (ASM). ASM secretion was reduced in injured dysferlinopathic cells, and acute treatment with sphingomyelinase restored the repair ability of dysferlinopathic myoblasts and myofibers. Our results provide the mechanism for dysferlin-mediated repair of skeletal muscle sarcolemma and identify ASM as a potential therapy for dysferlinopathy.Dysferlinopathy is a progressive muscle wasting disease, which is classified as limb-girdle muscular dystrophy type 2B (LGMD2B) or Miyoshi muscular dystrophy 1, based on its muscle involvement.1, 2 Dysferlin deficit leads to altered vesicle formation and trafficking,3, 4 poor repair of injured cell membranes,5, 6 and increased muscle inflammation.7, 8 Dysferlin contains C2 domains that are found in Ca2+-dependent membrane fusion proteins such as synaptotagmins.9 Thus, dysferlin is thought to regulate muscle function by regulating vesicle trafficking and fusion.10, 11, 12, 13 Dysferlin deficiency has also been implicated in conflicting reports regarding the fusion ability of dysferlinopathic myoblasts.4, 14, 15, 16 With such diverse roles for dysferlin, the mechanism through which dysferlin deficiency results in muscle pathology is unresolved. As skeletal muscle-specific re-expression of dysferlin rescues all dysferlinopathic pathologies,17, 18 myofiber repair has been suggested to be the unifying deficit underlying muscle pathology in dysferlinopathy.19 Repair of injured cell membranes requires subcellular compartments, which in mammalian cells include lysosomes,11 enlargeosomes,20 caveolae,21 dysferlin-containing vesicles,5 and mitochondria.22Cells from muscular dystrophy patients that have normal dysferlin expression exhibit normal lysosome and enlargeosome exocytosis.23 However, dysferlinopathic muscle cells exhibit enlarged LAMP2-positive lysosomes, reduced fusion of early endosomes, altered expression of proteins regulating late endosome/lysosome fusion, and reduced injury-triggered cell-surface levels of LAMP1.4, 11, 12 In non-muscle cells, lack of dysferlin reduces lysosomal exocytosis.24 These findings implicate lysosomes in dysferlin-mediated muscle cell membrane repair. In one model for lysosome-mediated cell membrane repair, Ca2+ triggers vesicle–vesicle fusion near the site of injury, forming ‘membrane patch'', which fuses to repair the wounded cell membrane.25, 26, 27, 28 In another model, lysosome exocytosis following cell membrane injury by pore-forming toxins leads to secretion of the lysosomal enzyme acid sphingomyelinase (ASM), which causes endocytosis of pores in the damaged cell membranes.21, 29, 30 Both these models have been suggested to be involved in the repair of injured muscle cells.21, 28To examine the muscle cell pathology in dysferlinopathy, we have developed dysferlinopathic mouse and human models. Use of these models shows that a lack of dysferlin does not alter myogenic differentiation but causes poor repair of even undifferentiated muscle cells. We show that dysferlin is required for tethering lysosomes to the cell membrane. Fewer lysosomes at the cell membrane in dysferlinopathic cells results in slow and reduced lysosome exocytosis following injury. This reduction in exocytosis reduces injury-triggered ASM secretion, which is responsible for the poor repair of dysferlinopathic muscle cells. Extracellular sphingomyelinase (SM) fully rescues the repair deficit in dysferlinopathic cells and mouse myofibers, offering a potential drug-based therapy for dysferlinopathy.  相似文献   

7.
8.
9.
10.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

11.
12.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

13.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

14.
The deregulation of miR-101 and DNMT3a has been implicated in the pathogenesis of multiple tumor types, but whether and how miR-101 silencing and DNMT3a overexpression contribute to lung tumorigenesis remain elusive. Here we show that miR-101 downregulation associates with DNMT3a overexpression in lung cancer cell lines and patient tissues. Ectopic miR-101 expression remarkably abrogated the DNMT3a 3′-UTR luciferase activity corresponding to the miR-101 binding site and caused an attenuated expression of endogenous DNMT3a, which led to a reduction of global DNA methylation and the re-expression of tumor suppressor CDH1 via its promoter DNA hypomethylation. Functionally, restoration of miR-101 expression suppressed lung cancer cell clonability and migration, which recapitulated the DNMT3a knockdown effects. Interestingly, miR-101 synergized with decitabine to downregulate DNMT3a and to reduce DNA methylation. Importantly, ectopic miR-101 expression was sufficient to trigger in vivo lung tumor regression and the blockage of metastasis. Consistent with these phenotypes, examination of xenograft tumors disclosed an increase of miR-101, a decrease of DNMT3a and the subsequent DNA demethylation. These findings support that the loss or suppression of miR-101 function accelerates lung tumorigenesis through DNMT3a-dependent DNA methylation, and suggest that miR-101-DNMT3a axis may have therapeutic value in treating refractory lung cancer.Owing to a high propensity for recurrence and a high rate of metastasis at the advanced stages,1, 2, 3 lung cancer remains the leading cause of cancer-related mortality. DNA methylation is a major epigenetic rule controlling chromosomal stability and gene expression.4, 5 It is under control of DNA methyltransferases (DNMTs), whose overexpression in lung cancer cells predicts worse outcomes.6, 7 It is postulated that DNMT overexpression induces DNA hypermethylation and silencing of tumor suppressor genes (TSGs), leading to an aggressive lung cancer. Indeed, enforced expression of DNMT1 or DNMT3a increases DNA methylation, while the abolition of DNMT expression by genetic depletion, microRNAs (miRs) or small molecules reduces genome-wide and gene-specific DNA methylation and restores TSG expression.8, 9, 10, 11, 12, 13 As TSGs are the master controllers for cell multiplicity and their silencing predicts poor prognosis,14, 15 TSG re-expression via promoter DNA hypomethylation inhibits cell proliferation and induces cell differentiation.13, 16 Thus, DNMT gene abundance could serve as a target for anticancer therapy, but how DNMT upregulation occurs in lung cancer is incompletely understood.MiRs are small non-coding RNAs that crucially regulate target gene expression. Up to 30% of all protein-coding genes are predicted to be targeted by miRs,17, 18 supporting the key roles of miRs in controlling cell fate.19, 20, 21, 22 Research is showing that certain miRs are frequently dysregulated in cancers, including lung cancer.7, 23, 24 As miR targets can promote or inhibit cancer cell expansion, miRs have huge potential for acting as bona fide oncogenes (i.e., miR-21) or TSGs (i.e., miR-29b).7, 25 We and others demonstrated that the levels of DNMT1 or DNMT3a or DNMT3b are regulated by miR-29b, miR-148, miR-152 or miR-30c,7, 13, 26, 27 and overexpression of these miRs results in DNA hypomethylation and TSG reactivation with the concurrent blockage of cancer cell proliferation.7, 13 These findings underscore the importance of miRs as epigenetic modulators and highlight their therapeutic applications.MiR-101 is frequently silenced in human cancers28, 29, 30, 31 and, importantly, exhibits antitumorigenic properties when overexpressed. Mechanistically, miR-101 inactivation by genomic loss causes the overexpression of EZH2, a histone methyltransferase, via 3′-UTR targeting, which is followed by histone hypermethylation and aggressive tumorigenesis.29, 30, 32 However, whether and how miR-101 silencing contributes to DNA hypermethylation patterning in lung cancer is unclear. In this study, we explore the role of miR-101 in regulating DNMT3a expression and the impacts of miR-101-DNMT3a nexus on lung cancer pathogenesis. We showed that the expression of miR-101 and DNMT3a was negatively correlated in lung cancer. We presented evidence that ectopic miR-101 expression decreased DNMT3a levels, reduced global DNA methylation and upregulated CDH1 via its promoter DNA demethylation. The biological significance of miR-101-mediated DNA hypomethylation and CDH1 re-expression was evident by its inhibition of lung tumor cell growth in vitro and in vivo. Thus, our findings mechanistically and functionally link miR-101 silencing to DNA hypermethylation in lung cancer cells.  相似文献   

15.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

16.
17.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

18.
19.
20.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号