首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

2.
The NIGMS Human Genetic Mutant Cell Repository collects and distributes well-characterized human/rodent somatic cell hybrid regional mapping panels for human chromosomes 3, 4, 5, 11, 15, 17, 18, and X. Each regional mapping panel consists of 4 to 11 hybrids that divide the chromosome into 5 to 11 intervals. These panels have been extensively characterized by the submitters and the NIGMS Repository.  相似文献   

3.
Summary A cosmid library has been prepared in the lorist-B vector from a mouse/human somatic cell hybrid containing region 11q23-11pter as the only human component. This chromosome region is stably maintained in the hybrid as a result of translocation onto one copy of mouse chromosome 13. Individual cosmids containing human DNA were isolated by their ability to hybridise with total human DNA, digested with either HindIII or EcoRI, and 33 individual unique sequences were identified. These fragments were then isolated and subcloned into the bluescribe plasmid vector. Regional localisation of these unique sequences was achieved using a panel of somatic cell hybrids containing different overlapping deletions of chromosome 11. The majority of the 33 mapped sequences derived from the long arm of chromosome 11. Two clones were located within the 11p13–p14 region, which is associated with a predisposition to Wilms' tumour. These probes supplement those already mapped to this chromosome and will assist in the generation of a detailed chromosome 11 linkage map.  相似文献   

4.
Summary The three major troponin I isoforms are encoded by separate genes and are expressed in a muscle-type-specific manner. A human cardiac troponin I cDNA has recently been isolated and used to establish the genomic location of the cardiac troponin I gene locus (designated TNNC1). By somatic cell hybrid analysis, the locus for TNNC1 maps to human chromosome 19 and can be localised to the region p13.2–q13.2  相似文献   

5.
We have determined the chromosomal localization of the gene for the catalytic subunit Cα of cAMP-dependent protein kinase (locus PRKACA) to human chromosome 19 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. In addition, PCR analysis of a chromosome 19 mapping panel revealed the presence of a human Cα-specific amplification product only in cell lines containing the region 19p13.1 to 19q12. Finally, two-color fluorescencein situhybridization to metaphase chromosomes using the human Cα cDNA and human chromosome 19 inter-Alu-PCR product as probes localized the human Cα gene to chromosome region 19p13.1.  相似文献   

6.
7.
A human hair cuticle ultrahigh-sulphur keratin (UHSK) gene (KRN1) has been mapped by Southern analysis of a somatic cell hybrid panel and by in situ hybridization. A probe containing the coding region of this gene mapped to 11pter->11q21 using the hybrid cell panel and on in situ hybridization mapped to two regions on chromosome 11: the distal part of 11p15, most likely 11p15.5, and the distal part of 11q13, most likely 11q13.5. A probe from the 3 non-coding region of KRN1 mapped to 11q13.5 indicating that this was the map location of the cloned gene. The sequence of 11p15.5 is termed KRN1-like (KRN1L). The results reveal that the cuticle UHSK gene family is clustered in the human genome. Present address: The Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, United Kingdom.  相似文献   

8.
Human acid sphingomyelinase (SMPD1) is the lysosomal phosphodiesterase that cleaves sphingomyelin to ceramide and phosphocholine. The deficient activity of SMPD1 is the enzymatic defect in Types A and B Niemann-Pick disease. Previously, the gene encoding human SMPD1 was assigned to chromosome 17 by the differential thermostability of human and hamster SMPD1 in somatic cell hybrids. The recent isolation of the human SMPD1 cDNA (L. E. Quintern, E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff, and R. J. Desnick, 1989, EMBO J. 8: 2469-2473) permitted the mapping of this gene by molecular techniques. Oligonucleotide primers were synthesized to PCR amplify the human, but not murine, SMPD1 sequences in man-mouse somatic cell hybrids. In a panel of 15 hybrid cell lines, amplification of the human SMPD1 sequence was 100% concordant with the presence of human chromosome 11. For each of the other human chromosomes there were at least 6 discordant hybrid lines. Further analysis of somatic cell hybrids containing only chromosome 11 or chromosome 11 rearrangements localized the human SMPD1 gene to the region 11p15.1----p15.4. To provide an independent regional gene assignment, in situ hybridization was performed using the radiolabeled human SMPD1 cDNA. In the 58 metaphase cells examined, 34% of the 122 hybridization sites scored were located in the distal end of chromosome 11 with the major peak of hybridization at band 11p15. The absence of any other in situ hybridization site indicated the absence of pseudogenes or homologous sequences elsewhere in the genome. In contrast to the previous provisional localization to chromosome 17, these results assign a single locus for human SMPD1 to 11p15.1----p15.4.  相似文献   

9.
The causal link between disparate tropomyosin (Tm) functions and the structural instability in Tm is unknown. To test the hypothesis that the structural instability in the central region of Tm modulates the function of the overlapping ends of contiguous Tm dimers, we used transgenic mice (TmDM) that expressed a mutant α-Tm in the heart; S229E and H276N substitutions induce structural instability in the central region and the overlapping ends of Tm, respectively. In addition, two mouse cardiac troponin T mutants (TnT1–44Δ and TnT45–74Δ) that have a divergent effect on the overlapping ends of Tm were employed. The S229E-induced instability in the central region of TmDM altered the overlapping ends of TmDM, thereby it negated the attenuating effect of H276N on Ca2+-activated maximal tension. The rate of cross-bridge detachment (g) decreased in TmDM+TnTWT and TmH276N+TnTWT fibers but increased in TmDM+TnT45–74Δ fibers; however, TnT45–74Δ did not alter g, demonstrating that S229E in TmDM had divergent effects on g. The S229E substitution in TmDM ablated the H276N-induced desensitization of myofilament Ca2+ sensitivity in TmDM+TnT1–44Δ fibers. To our knowledge, novel findings from this study show that the structural instability in the central region of Tm modifies cardiac contractile function via its effect on the overlapping ends of contiguous Tm.  相似文献   

10.
It has been shown that the X-ray-sensitive Chinese hamster V79 mutants (V-E5, V-C4 and V-G8) are similar to ataxia-telangiectasia (A-T) cells. To determine whether the AT-like rodent cell mutants are defective in the gene homologous to A-T (group A, C or D), human chromosome 11 was introduced to the V-E5 and V-G8 mutant cells by microcell-mediated chromosome transfer. Forty independent hybrid clones were obtained in which the presence of chromosome 11 was determined by in situ hybridization. The presence of the region of chromosome 11q22–23 was shown by molecular analysis using polymorphic DNA markers specific for the ATA, ATC and ATD loci. Seventeen of the obtained monochromosomal Chinese hamster hybrids contained a cytogenetically normal human chromosome 11, but only twelve hybrid cell lines were shown to contain an intact 11q22–23 region. Despite the complementation of the X-ray sensitivity by a normal chromosome 11 introduced to A-T cells (complementation group D), these twelve Chinese hamster hybrid clones showed lack of complementation of X-ray and streptonigrin hypersensitivity. The observed lack of complementation does not seem to be attributable to hypermethylation of the human chromosome 11 in the rodent cell background, since 5-azacytidine treatment had no effect on the streptonigrin hypersensitivity of the hybrid cell lines. These results indicate that the gene defective in the AT-like rodent cell mutants is not homologous to the ATA, ATC or ATD genes and that the human gene complementing the defect in the AT-like mutants seems not to be located on human chromosome 11.  相似文献   

11.
Transiently activating (A-type) potassium (K) channels are important regulators of action potential and action potential firing frequencies. HK1 designates the first human cDNA that is highly homologous to the rat RCK4 cDNA that codes for an A-type K-channel. The HK1 channel is expressed in heart. By somatic cell hybrid analysis, the HK1 gene has been assigned to human chromosome 11p13-p14, the WAGR deletion region (Wilms tumor, aniridia, genito-urinary abnormalities and mental retardation). Subsequent pulsed field gel (PFG) analysis and comparison with the well-established PFG map of this region localized the gene to 11p14, 200–600kb telomeric to the FSHB gene.  相似文献   

12.
Summary DiGeorge syndrome (DGS) is a human developmental defect of the structures derived from the third and fourth pharyngeal pouches. It apparently arises due to deletion of 22q11. We describe a strategy for the isolation of DNA probes for this region. A deleted chromosome 22, which includes 22q11, was flow-sorted from a lymphoblastoid cell line of a patient with cat eye syndrome and used as the source of DNA. A DNA library was constructed from this chromosome by cloning into the EcoR1 site of the vector Lambda gt10. Inserts were amplified by PCR and mapped using a somatic cell hybrid panel of this region. Out of 32 probes, 14 were mapped to 22q11. These probes were further sublocalised within the region by dosage analysis of DGS patients, and by the use of two new hybrid cell lines which we have produced from DGS patients. One of these lines (7939B662) contains the altered human chromosome segregated from its normal homologue. This chromosome 22 contains an interstitial deletion in 22q11, and will be useful for localising further probes to the DGS region.  相似文献   

13.
Repeat element-mediated PCR can facilitate rapid cloning and mapping of human chromosomal region-specific DNA markers from somatic cell hybrid DNA. PCR primers directed to human repeat elements result in human-specific DNA synthesis; template DNA derived from a somatic cell hybrid containing the human chromosomal region of interest provides region specificity. We have generated a series of repeat element-mediated PCR clones from a reduced complexity somatic cell hybrid containing a portion of human chromosome 10. The cloning source retains the centromere and tightly linked flanking markers, plus additional chromosome 10 sequences. Twelve new inter-Alu, two inter-L1, and four inter-Alu/L1 repeat element-mediated PCR clones were mapped by hybridization to Southern blots of repeat element-mediated PCR products amplified from somatic cell hybrid DNA templates. Two inter-Alu clones mapped to the pericentromeric region. We propose that a scarcity of Alu elements in the pericentromeric region of chromosome 10 contributed to the low number of clones obtained from this region. One inter-Alu clone, pC11/A1S-6-c23, defines the D10S94 locus, which is tightly linked to MEN2A and D10Z1.  相似文献   

14.
The chromosomal loci of the human parvalbumin and oncomodulin single-copy genes that encode structurally and evolutionarily closely related Ca(2+)-binding proteins were determined by somatic cell hybrid analysis. Southern blot analysis of genomic DNA from 25 human-hamster somatic cell hybrids showed that the human gene for oncomodulin resides on chromosome 7. Analysis of human-mouse hybrids selectively retaining human chromosome 7 or a portion of it allowed specific assignment of the gene locus to the p11-p13 region of chromosome 7 known to be mutated or deleted in patients with the Greig cephalopolysyndactyly syndrome. By gene dosage analysis on Southern blots, we showed that the gene for human parvalbumin maps distally to the cat eye syndrome marker D22S9 on chromosome 22q. Using somatic cell hybrids containing parts of human chromosome 22, the parvalbumin gene was sublocalized to the region 22q12-q13.1. This region contains a linkage group that maps to mouse chromosome 15, region E, and includes the SIS, ARSA, and DIA 1 genes. Our findings are consistent with the recent localization of the mouse parvalbumin gene to this region by two independent methods (C. H. Zühlke et al., 1989, Genet. Res. 54:37-43; S. Adolph et al., 1989, Cytogenet. Cell Genet. 52:177-179).  相似文献   

15.
16.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

17.
The human recombination activating gene 1 (RAG1) has previously been mapped to chromosomes 14q and 11p. Here we confirm the chromosome 11 assignment by two independent approaches: autoradiographic and fluorescence in situ hybridization to metaphase spreads and analysis of human-hamster somatic cell hybrid DNA by the polymerase chain reaction (PCR) and Southern blotting. Our results unequivocally localize RAG1 to 11p13.  相似文献   

18.
A human serum amyloid A (SAA) cDNA was used as a probe in chromosome mapping studies to detect human SAA gene sequences in DNA isolated from human/mouse somatic cell hybrids. Southern analysis of DNA from 20 hybrid cell lines, including some with translocations of human chromosomes, placed the SAA gene(s) in the p11----pter region of chromosome 11. Screening of human DNA from unrelated individuals by Southern analysis using the SAA cDNA probe revealed restriction fragment polymorphisms for HindIII and PstI. An analysis of the segregation of these polymorphisms with other markers on the short arm of chromosome 11 should more precisely map the SAA gene(s).  相似文献   

19.
The second human calcitonin/CGRP gene is located on chromosome 11   总被引:6,自引:0,他引:6  
Summary A second human calcitonin/calcitonin gene related peptide (hCT/CGRP) gene has been identified. This second hCT/CGRP gene has been shown to contain sequences highly homologous to exons 3, 5 (CGRP-encoding), and 6 of the first hCT/CGRP gene, but sequences closely related to exon 4 (CT-encoding) could not be demonstrated. Southern blot hybridization analysis of DNA from human-rodent somatic cell hybrids showed that the second hCT/CGRP gene is located in the q12-pter region of chromosome 11. The first hCT/CGRP gene has previously been assigned to the p13–p15 region of chromosome 11.  相似文献   

20.
We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient–derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号