首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Daily global observations from the Advanced Very High‐Resolution Radiometers on the series of meteorological satellites operated by the National Oceanic and Atmospheric Administration between 1982 and 1999 were used to generate a new weekly global burnt surface product at a resolution of 8 km. Comparison with independently available information on fire locations and timing suggest that while the time‐series cannot yet be used to make accurate and quantitative estimates of global burnt area it does provide a reliable estimate of changes in location and season of burning on the global scale. This time‐series was used to characterize fire activity in both northern and southern hemispheres on the basis of average seasonal cycle and interannual variability. Fire seasonality and fire distribution data sets have been combined to provide gridded maps at 0.5° resolution documenting the probability of fire occurring in any given season for any location. A multiannual variogram constructed from 17 years of observations shows good agreement between the spatial–temporal behavior in fire activity and the ‘El Niño’ Southern Oscillation events, showing highly likely connections between both phenomena.  相似文献   

2.
Non‐native, invasive grasses have been linked to altered grass‐fire cycles worldwide. Although a few studies have quantified resulting changes in fire activity at local scales, and many have speculated about larger scales, regional alterations to fire regimes remain poorly documented. We assessed the influence of large‐scale Bromus tectorum (hereafter cheatgrass) invasion on fire size, duration, spread rate, and interannual variability in comparison to other prominent land cover classes across the Great Basin, USA. We compared regional land cover maps to burned area measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) for 2000–2009 and to fire extents recorded by the USGS registry of fires from 1980 to 2009. Cheatgrass dominates at least 6% of the central Great Basin (650 000 km2). MODIS records show that 13% of these cheatgrass‐dominated lands burned, resulting in a fire return interval of 78 years for any given location within cheatgrass. This proportion was more than double the amount burned across all other vegetation types (range: 0.5–6% burned). During the 1990s, this difference was even more extreme, with cheatgrass burning nearly four times more frequently than any native vegetation type (16% of cheatgrass burned compared to 1–5% of native vegetation). Cheatgrass was also disproportionately represented in the largest fires, comprising 24% of the land area of the 50 largest fires recorded by MODIS during the 2000s. Furthermore, multi‐date fires that burned across multiple vegetation types were significantly more likely to have started in cheatgrass. Finally, cheatgrass fires showed a strong interannual response to wet years, a trend only weakly observed in native vegetation types. These results demonstrate that cheatgrass invasion has substantially altered the regional fire regime. Although this result has been suspected by managers for decades, this study is the first to document recent cheatgrass‐driven fire regimes at a regional scale.  相似文献   

3.
4.
Global fire regimes are shifting due to climate and land use changes. Understanding the responses of belowground communities to fire is key to predicting changes in the ecosystem processes they regulate. We conducted a comprehensive meta‐analysis of 1634 observations from 131 empirical studies to investigate the effect of fire on soil microorganisms and mesofauna. Fire had a strong negative effect on soil biota biomass, abundance, richness, evenness, and diversity. Fire reduced microorganism biomass and abundance by up to 96%. Bacteria were more resistant to fire than fungi. Fire reduced nematode abundance by 88% but had no significant effect on soil arthropods. Fire reduced richness, evenness and diversity of soil microorganisms and mesofauna by up to 99%. We found little evidence of temporal trends towards recovery within 10 years post‐disturbance suggesting little resilience of the soil community to fire. Interactions between biome, fire type, and depth explained few of these negative trends. Future research at the intersection of fire ecology and soil biology should aim to integrate soil community structure with the ecosystem processes they mediate under changing global fire regimes.  相似文献   

5.
Understanding how landscape heterogeneity mediates the effects of fire on biodiversity is increasingly important under global changes in fire regimes. We used a simulation experiment to investigate how fire regimes interact with topography and weather to shape neutral and selection‐driven genetic diversity under alternative dispersal scenarios, and to explore the conditions under which microrefuges can maintain genetic diversity of populations exposed to recurrent fire. Spatial heterogeneity in simulated fire frequency occurred in topographically complex landscapes, with fire refuges and fire‐prone “hotspots” apparent. Interannual weather variability reduced the effect of topography on fire patterns, with refuges less apparent under high weather variability. Neutral genetic diversity was correlated with long‐term fire frequency under spatially heterogeneous fire regimes, being higher in fire refuges than fire‐prone areas, except under high dispersal or low fire severity (low mortality). This generated different spatial genetic structures in fire‐prone and fire‐refuge components of the landscape, despite similar dispersal. In contrast, genetic diversity was only associated with time since the most recent fire in flat landscapes without predictable refuges and hotspots. Genetic effects of selection driven by fire‐related conditions depended on selection pressure, migration distance and spatial heterogeneity in fire regimes. Allele frequencies at a locus conferring higher fitness under successional environmental conditions followed a pattern of “temporal adaptation” to contemporary conditions under strong selection pressure and high migration. However, selected allele frequencies were correlated with spatial variation in long‐term mean fire frequency (relating to environmental predictability) under weak dispersal, low selection pressure and strong spatial heterogeneity in fire regimes.  相似文献   

6.
Aim The goal of this study was to understand better the role of interannual and interdecadal climatic variation on local pre‐EuroAmerican settlement fire regimes in fire‐prone Jeffrey pine (Pinus jeffreyi Grev. & Balf.) dominated forests in the northern Sierra Nevada Mountains. Location Our study was conducted in a 6000‐ha area of contiguous mixed Jeffrey pine‐white fir (Abies concolor Gordon & Glend.) forest on the western slope of the Carson Range on the eastern shore of Lake Tahoe, Nevada. Methods Pre‐EuroAmerican settlement fire regimes (i.e. frequency, return interval, extent, season) were reconstructed in eight contiguous watersheds for a 200‐year period (1650–1850) from fire scars preserved in the annual growth rings of nineteenth century cut stumps and recently dead pre‐settlement Jeffrey pine trees. Superposed epoch analysis (SEA) and correlation analysis were used to examine relationships between tree ring‐based reconstructions of the Palmer Drought Severity Index (PDSI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO) and pre‐EuroAmerican fire regimes in order to assess the influence of drought and equatorial and north Pacific teleconnections on fire occurrence and fire extent. Results For the entire period of record (1650–1850), wet conditions were characteristic of years without fires. In contrast, fire years were associated with drought. Drought intensity also influenced fire extent and the most widespread fires occurred in the driest years. Years with widespread fires were also preceded by wet conditions 3 years before the fire. Widespread fires were also associated with phase changes of the PDO, with the most widespread burns occurring when the phase changed from warm (positive) to cold (negative) conditions. Annual SOI and fire frequency or extent were not associated in our study. At decadal time scales, burning was more widespread during decades that were dryer and characterized by La Niña and negative PDO conditions. Interannual and interdecadal fire–climate relationships were not stable over time. From 1700 to 1775 there was no interannual relationship between drought, PDO, and fire frequency or extent. However, from 1775 to 1850, widespread fires were associated with dry years preceded by wet years. This period also had the strongest association between fire extent and the PDO. In contrast, fire–climate associations at interdecadal time scales were stronger in the earlier period than in the later period. The change from strong interdecadal to strong interannual climate influence was associated with a breakdown in decadal scale constructive relationships between PDO and SOI. Main conclusions Climate strongly influenced pre‐settlement pine forest fire regimes in northern Sierra Nevada. Both interannual and interdecadal climatic variation regulated conditions conducive to fire activity, and longer term changes in fire frequency and extent correspond with climate‐mediated changes observed in both the northern and southern hemispheres. The sensitivity of fire regimes to shifts in modes of climatic variability suggests that climate was a key regulator of pine forest ecosystem structure and dynamics before EuroAmerican settlement. An understanding of pre‐EuroAmerican fire–climate relationships may provide useful insights into how fire activity in contemporary forests may respond to future climatic variation.  相似文献   

7.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

8.
Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.  相似文献   

9.
The human dimension of fire regimes on Earth   总被引:1,自引:0,他引:1  
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.  相似文献   

10.
Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia‐wide field‐based survey (at 113 locations) across large‐scale macroecological gradients (climate, productivity and fire regimes) enabled estimation of how biomass combustion by surface fire directly affects continental‐scale carbon budgets. In terms of biomass consumption, we found clear trade‐offs between the frequency and severity of surface fires. In temperate southern Australia, characterised by less frequent and more severe fires, biomass consumed per fire was typically very high. In contrast, surface fires in the tropical savannas of northern Australia were very frequent but less severe, with much lower consumption of biomass per fire (about a quarter of that in the far south). When biomass consumption was expressed on an annual basis, biomass consumed was far greater in the tropical savannas (>20 times that of the far south). This trade‐off is also apparent in the ratio of annual carbon consumption to net primary production (NPP). Across Australia's naturally vegetated land area, annual carbon consumption by surface fire is equivalent to about 11% of NPP, with a sharp contrast between temperate southern Australia (6%) and tropical northern Australia (46%). Our results emphasise that fire management to reduce greenhouse gas emissions should focus on fire prone tropical savanna landscapes, where the vast bulk of biomass consumption occurs globally. In these landscapes, grass biomass is a key driver of frequency, intensity and combustion completeness of surface fires, and management actions that increase grass biomass are likely to lead to increases in greenhouse gas emissions from savanna fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号