首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Data from three published studies of genetic variation at 18 microsatellite loci in water buffalo populations in China (18 swamp type, two river type), Nepal (one wild, one domestic river, one hybrid) and south-east Asia (eight swamp, three river) were combined so as to gain a broader understanding of genetic relationships among the populations and their demographic history. Mean numbers of alleles and expected heterozygosities were significantly different among populations. Estimates of θ (a measure of population differentiation) were significant among the swamp populations for all loci and among the river populations for most loci. Differentiation among the Chinese swamp populations (which was due primarily to just one population) was much less than among the south-east Asian. The Nepal wild animals, phenotypically swamp type but genetically like river type, are significantly different from all the domestic river populations and presumably represent the ancestral Bubalus arnee (possibly with some river-type introgression). Relationships among the swamp populations (D(A) genetic distances, principal component analysis and structure analyses) show the south-east Asian populations separated into two groups by the Chinese populations. Given these relationships and the patterns of genetic variability, we postulate that the swamp buffalo was domesticated in the region of the far south of China, northern Thailand and Indochina. Following domestication, it spread south through peninsular Malaysia to Sumatra, Java and Sulawesi, and north through China, and then to Taiwan, the Philippines and Borneo.  相似文献   

2.
Genetic variation at 53 protein-coding loci (25 polymorphic) was analysed for 17 water buffalo populations – 12 swamp, three Lankan and two of the Murrah breed (river type), to determine the magnitude of genetic differentiation and the genetic relationships among the populations. In accord with previous cytological studies, the Lankan buffalo clearly are river type. Significant deviations from Hardy–Weinberg equilibrium were shown for a number of locus–population combinations, with all populations but one showing significant heterogeneity in these deviations among loci. By contrast, heterogeneity among populations for each locus was much less, indicating locus-specific deviations, which suggest selection affecting allele frequencies at some loci. There was significant genetic differentiation among populations of both the swamp and river types. The differentiation among the swamp populations may reflect the geography of south-east Asia and the presumed spread of the swamp buffalo through this region. Phylogenies derived from pairwise genetic distance estimates show the clear separation of swamp and river types, but the topology of the swamp populations shows rather poor consistency with their geographic locations. For at least one population (Australia), it is clear that bottleneck effects have distorted the phylogenetic topology. Average genetic distances for both the swamp and river types, as compared with previous studies of livestock breeds, show that the genetic differentiation of each of these sets of populations is of the same order of magnitude as that among well-recognized and established breeds of other species.  相似文献   

3.
Zhang Y  Sun D  Yu Y  Zhang Y 《Animal genetics》2007,38(6):569-575
To determine genetic diversity and evolutionary relationships among Chinese buffalo populations, 18 indigenous swamp buffalo populations and two introduced river buffalo breeds were genotyped for 30 microsatellite loci. The mean number of alleles across the 30 loci was 8.13, and the expected heterozygosity ranged from 0.517 (Yanjin) to 0.609 (Dehong). Although there was abundant genetic variation, genetic differentiation between Chinese buffalo populations was low, with only 2.8% of the total genetic variance among populations. The genetic differentiation pattern and genetic relationships among Chinese buffalo populations were consistent with their geographic distribution. The Dehong population was discerned as a distinct indigenous population, but suffered genetic admixture with river buffalo. The remaining populations were divided into four major clusters, i.e. the Upper and Middle Reaches of Yangtze Valley cluster (Guizhou, Guizhoubai, Yanjin, Fuling, Enshi and Jianghan), the Lower Reaches of Yangtze Valley cluster (Haizi, Shanqu and Dongliu), the South China cluster (Fuan and Xinfeng) and the Southwest China cluster (Xinglong, Xilin, Diandongnan and Dechang).  相似文献   

4.
Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo ( Bubalus arnee ). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28 000 to 87 000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland southeast Asia and then to the western islands of Indonesia.  相似文献   

5.
Two populations of Przewalski's naked carp Gymnocypris przewalskii, 30 individuals per population, were screened for 10 microsatellite loci. Moderate allele variation was found in these loci with two to eight alleles per locus. The expected and observed heterozygosity ranged from 0·019 to 0·805 and from 0·160 to 0·575, respectively.  相似文献   

6.
Fourteen polymorphic microsatellite loci were isolated and characterized for the Neotropical cichlid Geophagus brasiliensis and tested on 30 individuals belonging to a single population. Among the 14 loci described, four showed potential presence of null alleles, inferred from the excess of homozygous genotypes, and three of these loci showed significant deviations from Hardy–Weinberg equilibrium. Fifty‐nine different alleles were detected (ranging from two to eight alleles per locus), with estimates of observed and expected heterozygosity ranging from 0·167 to 0·700 and from 0·269 to 0·825. Cross‐amplification of primers was successful in five other cichlid species.  相似文献   

7.
Genetic diversity and divergence patterns of smallmouth bass Micropterus dolomieu spawning groups are analysed across its northern native range with mtDNA cytochrome b gene sequences and eight unlinked nuclear DNA microsatellite loci. Results reveal high levels of genetic variability and significant differences in allelic representation among populations (mtDNA: mean ± s.e ., HD = 0·50 ± 0·06, mean ± s.e ., θST = 0·41 ± 0·02 and microsatellites: mean ± s.e . HO = 0·46 ± 0·03, mean ± s.e . θST = 0·25 ± 0·01). The distributions of 28 variant mtDNA haplotypes, which differ by an average of 3·94 nucleotides (range = 1–8), denote divergent representation among geographic areas. Microsatellite data support nine primary population groups, whose high self‐assignment probabilities likewise display marked divergence. Genetic patterns demonstrate: (1) high genetic diversity in both genomes, (2) significant divergence among populations, probably resulting from natal site homing and low lifetime migration, (3) support for three post‐glacial refugia that variously contributed to the current northern populations, which remain evident today despite waterway connectivity and (4) a weak yet significant genetic isolation by geographic distance pattern, indicating that other processes affect the differences among populations, such as territoriality and site fidelity.  相似文献   

8.
Tri‐ and tetra‐motif repeat microsatellite marker loci were developed for the white‐spotted charr Salvelinus leucomaenis. The 454 pyrosequencing was used to discover repeat arrays, and eight microsatellite‐primer sets, available for the estimation of polymorphisms, were identified. The number of alleles in a wild population ranged from two to four and the observed and expected heterozygosities were 0·180–0·600 and 0·188–0·599, respectively.  相似文献   

9.
Eight polymorphic microsatellite loci were developed for the brook lamprey Lampetra planeri through 454 sequencing and their usefulness was tested in 45 individuals of both L. planeri and the river lamprey Lampetra fluviatilis. The number of alleles per loci ranged between two and five; the Italian and Irish populations had a mean expected heterozygosity of 0·388 and 0·424 and a mean observed heterozygosity of 0·418 and 0·411, respectively.  相似文献   

10.
德宏水牛微卫星标记分析的群体遗传变异   总被引:6,自引:0,他引:6  
德宏水牛是云南省地方水牛的优良品种之一,为了进一步阐明其群体遗传变异和遗传结构,筛选了分别位于水牛14条染色体上的15对微卫星引物,对德宏水牛81个个体进行了检测分析.共检测到62个等位基因,每个座位等位基因数目从2到6个不等,平均等位基因数为4.13,该水牛群体期望杂合度和多态信息含量分别为0.6520±0.1526和0.5863±0.1789,各座位的遗传分化系数在0~0.0919之间,平均值为0.0202.每个座位的基因流较大,平均12.1502.研究结果表明德宏水牛群体遗传多样性较丰富,亚群间的遗传分化程度低,基因流较大,且很少发生近交.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号