首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
多聚谷氨酰胺(polyglutamine,PolyQ)疾病是由特定基因序列中CAG三核苷酸的不稳定重复扩增所引发的一类神经退行性疾病。至今已发现9种类型的PolyQ疾病,其中多数疾病的致病蛋白质在转录调控中发挥着重要的病理作用。PolyQ蛋白中谷氨酰胺的异常重复延伸会引发蛋白质错误折叠并在细胞中积聚形成包涵体。积聚的蛋白质可通过自身结构域、泛素修饰和RNA等介导的相互作用,有效地募集细胞内的转录因子、泛素接头或受体蛋白,以及分子伴侣等组分到包涵体中。这些组分在细胞中的可溶性比例减少,使得机体内的转录调控系统功能受损,造成转录失调从而诱发疾病。因此,研究异常延伸的PolyQ蛋白对细胞内转录因子及其他组分的募集作用,可在分子水平上解释神经退行性疾病的发病机制,从而为临床应用提供潜在的预防和治疗方法。  相似文献   

2.
Ataxin-7 (Atx7)蛋白是真核细胞SAGA (Spt-Ada-Gcn5 acetyltransferase)复合物中的重要组成亚基,能将其去泛素化模块锚定到整个复合物上并起到骨架支撑作用,进而参与SAGA复合物对染色质组蛋白乙酰化和去泛素化修饰的调控。Atx7通过调控SAGA复合物与视锥视杆细胞同源盒基因蛋白(cone-rod homeobox, CRX)的结合,对依赖CRX的基因转录激活起到调节作用。然而,Atx7的N-端多聚谷氨酰胺(polyglutamine, PolyQ)序列的异常延伸,会使其在细胞内发生蛋白质积聚(aggregation),进而引起Ⅶ-型脊髓小脑共济失调症(spinocerebellar ataxia 7, SCA7)的发生。现综述Atx7在细胞内的正常生理功能及其PolyQ延伸引起的蛋白质积聚,探讨PolyQ延伸的Atx7对细胞功能的影响,以及最终引发神经退行性疾病的分子机制。  相似文献   

3.
亨廷顿舞蹈症发病机制的研究进展   总被引:1,自引:0,他引:1  
亨廷顿舞蹈症是一种常染色体显性的神经退行性遗传病,由it-15基因外显子1发生CAG三核苷酸重复突变,引发其编码的亨廷顿蛋白多聚谷氨酰胺序列延长所致。突变亨廷顿蛋白导致大脑特定区域产生神经退行性病变的机制尚不明确。简要综述了亨廷顿舞蹈症发病机制的多种学说。  相似文献   

4.
多聚谷氨酰胺(polyglutamine,PolyQ)疾病是由CAG三核苷酸异常重复扩增并编码多聚谷氨酰胺链而致病的一类疾病.目前,已经发现了9种PolyQ疾病,临床表现为成年起病,缓慢进展性的神经系统功能障碍.近年来许多研究者用转基因动物模型(小鼠、果蝇、斑马鱼等)研究神经退行性疾病的表型、发病机制及治疗,其中,果蝇以其独特的分子遗传学优势成为研究PolyQ疾病的理想模式生物.本文就运用转基因果蝇研究PolyQ疾病的表型及发病机制作一综述.  相似文献   

5.
随着全球老龄化人口的急剧增加,神经退行性变已经成为危害公共健康的主要疾病。在神经退行性疾病(肌萎缩侧索硬化症(ALS)、额颞叶变性病(FTLD)和阿尔茨海默病(AD)等)患者脑组织中均能观察到蛋白质聚集形成的包涵体,其中TAR DNA结合蛋白43(TDP-43)是主要成分之一。目前已发现多个TDP-43基因突变与家族性ALS密切相关。TDP-43属RNA/DNA结合蛋白,参与细胞内多种RNA代谢过程,它可以在细胞核和细胞质之间穿梭,通过相变诱导胞质和核质包涵体的形成。本文简要总结了TDP-43在体内和体外聚集以及发生相变的研究进展。理解TDP-43的异常相变将有助于寻找神经退行性疾病的潜在治疗靶点。  相似文献   

6.
随着全球老龄化人口的急剧增加,神经退行性变已经成为危害公共健康的主要疾病。在神经退行性疾病(肌萎缩侧索硬化症(ALS)、额颞叶变性病(FTLD)和阿尔茨海默病(AD)等)患者脑组织中均能观察到蛋白质聚集形成的包涵体,其中TAR DNA结合蛋白43 (TDP-43)是主要成分之一。目前已发现多个TDP-43基因突变与家族性ALS密切相关。TDP-43属RNA/DNA结合蛋白,参与细胞内多种RNA代谢过程,它可以在细胞核和细胞质之间穿梭,通过相变诱导胞质和核质包涵体的形成。本文简要总结了TDP-43在体内和体外聚集以及发生相变的研究进展。理解TDP-43的异常相变将有助于寻找神经退行性疾病的潜在治疗靶点。  相似文献   

7.
WD-重复蛋白   总被引:3,自引:0,他引:3  
 WD基元又称Trp-ASP或WD40,由40个左右的氨基酸残基组成,具有保守的GH和WD序列.WD基元存在于很多具有调控功能的蛋白质中,介导蛋白质之间的相互作用,在信号转导、蛋白运输、染色体修饰、转录或RNA加工等过程中具有重要作用.WD重复蛋白(WD-repeat protein)是含有多个保守的WD基元的蛋白质.近年发现,WD-repeat基因突变与人的几种疾病相关.本文对真核生物WD-重复蛋白的研究进展进行了综述,阐明了WD 重复蛋白的β-propeller结构特征及其作用机制,并对WD-重复蛋白的未来研究方向进行展望.  相似文献   

8.
潘学峰 《遗传学报》2006,33(1):1-11
与三核苷酸重复序列CAG.CTG、CGG·CCG和GAA·TTC扩增和缺失有关的分子机制尚不能得到清楚的阐释.体外研究表明,上述疾病相关的重复序列可以在体外形成non-B二级结构,并介导重复序列扩增.然而,迄今为止,类似的观察尚未在体内研究过程中得以实现.利用模型生物大肠杆菌和酵母等进行的有关研究并不能模拟三核苷酸重复序列的扩增,这暗示三核苷酸重复序列的体内扩增可能与重复序列形成non-B二级结构关联性并不大.尽管理论上较长的三核苷酸重复序列可以在复制和后复制过程中较易形成non-B DNA二级结构,但这样的二级结构倾向于导致重复序列出现"脆性",而不是扩增.事实上,患者所具有的三核苷酸重复序列扩增并非一定需要通过non-B二级结构的介导,这些重复序列的扩增是可以通过一种RNA转录诱导的局部DNA重复序列的复制和其后的DNA重排得以发生.  相似文献   

9.
真核生物中锌指蛋白的结构与功能   总被引:3,自引:0,他引:3  
真核生物中的许多蛋白质分子包含锌指结构区,这类蛋白称为锌指蛋白.锌指蛋白因其包含特殊的指状结构,在对DNA、蛋白质和RNA的识别和结合中起重要作用.许多锌指蛋白的锌指结构域包含能与DNA特异结合的区域,并与某些效应结构域(如KRAB、SCAN、BTB/POZ、SNAG、SANT和PLAG等)相连,这类锌指蛋白常作为转录因子起作用,可调控靶基因的转录.一些锌指蛋白包含蛋白质识别结构域(如LIM锌指、MYND锌指、PHD锌指和RING锌指等),它们能够特异地介导蛋白质之间的相互作用,因此被称作蛋白适配器.此外,某些锌指蛋白还可以结合RNA,起转录后调控作用.本文就锌指蛋白与DNA、RNA以及蛋白质分子间的相互作用作一综述.  相似文献   

10.
亨廷顿舞蹈病是一种常染色体显性遗传的神经变性疾病.其致病基因为IT15,其编码的蛋白为亨廷顿蛋白.IT15基因1号外显子含有多态性三核苷酸(胞嘧啶-腺嘌呤-鸟嘌呤(CAG))重复序列,当CAG重复拷贝数大于37时引起发病.亨廷顿蛋白羧基端存在一个明确的、经典的出核信号,而新近的报道指出该蛋白的氨基端也存在一个胞浆定位相关功能域.通过对亨廷顿蛋白氨基端的部分氨基酸缺失和点突变等方式来研究该功能域,继而用免疫荧光和Western等技术观察该蛋白表达、聚集物形成和细胞内定位.结果发现,4~17个氨基酸是亨廷顿蛋白胞浆定位所必需的.L4R和L7R(由疏水氨基酸变为亲水氨基酸)的突变方式会导致1~17个氨基酸胞浆定位功能的缺失,而L4M和M8L(均为疏水氨基酸)的突变方式并未影响1~17个氨基酸的胞浆定位功能,说明其胞浆定位功能的维系依赖于该段序列的空间结构.前3个氨基酸的缺失并未影响前17个氨基酸与线粒体的共定位.同时观察到,该胞浆定位序列的功能缺失将导致异常增多的CAG重复所致的聚集物总量减少、定位于核内的比例增高,表明亨廷顿蛋白在细胞内的分布一定程度上也影响了聚集物的形成过程.这些结果对进一步研究聚集物的分子机制有一定的启示作用.  相似文献   

11.
12.
Polyglutamine (polyQ)-expansion proteins cause protein aggregation in the cytosol and nucleus of neuronal cells, leading to neurodegenerative diseases. For example, expansion of the polyQ tract (>40 repeats) in huntingtin (htt) proteins leads to Huntington disease, while polyQ-expanded ataxins cause several types of ataxias. PolyQ-rich inclusions are found in neuronal cells of patients, suggesting that polyQ disease is caused by protein misfolding. However, the mechanisms by which polyQ-expansion proteins exert neuronal toxicity are largely unknown. Here, we review experimental procedures to analyze the roles of molecular chaperones in preventing polyQ aggregation and toxicity as well as to measure the characteristics and dynamics of polyQ aggregation, particularly focusing on cellular models and dynamic imaging of fluorescently-labeled polyQ-expansion proteins and their modulation by chaperones.  相似文献   

13.
Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.  相似文献   

14.
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.  相似文献   

15.
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.  相似文献   

16.
Expansion of polyglutamine (polyQ) tracts within proteins underlies a number of neurodegenerative diseases, such as Huntington disease, Kennedy disease, and spinocerebellar ataxias. The resulting mutant proteins are unstable, forming insoluble aggregates that are associated with components of the ubiquitin system, including ubiquitin, ubiquitin-like proteins, and proteins that bind to ubiquitin. Given the presence of these ubiquitin-binding proteins in the insoluble aggregates, we examined whether heterologous expression of short motifs that bind ubiquitin, termed ubiquitin-interacting motifs (UIMs), altered the aggregation of polyQ-expanded huntingtin (Htt), the protein product of the Huntington disease gene. We found that a subset of UIMs associated with mutant Htt. The ability to interact with ubiquitin was necessary, but not sufficient, for interaction with mutant Htt. Furthermore, we found that expression of single, isolated UIMs inhibited aggregation of mutant Htt. These data suggest that isolated UIMs might serve as potential inhibitors of polyQ-aggregation in vivo.  相似文献   

17.
An intriguing set of neurodegenerative disease are the nine disorders caused by the expansion of a unstable trinucleotide CAG repeat where the repeat is located within the coding of the affected gene, that is, the polyglutamine (polyQ) diseases. A gain-of-function mechanism for toxicity in polyQ diseases is widely thought to have a major role in pathogenesis. Yet, the specific nature of this gain-of-function is a matter of considerable discussion. The basic issue concerns whether toxicity stems from the native or normal function of the affected protein versus a novel function induced by polyQ expansion. For at least three of the polyQ disease considerable evidence is accumulating that pathology is mediated by a polyQ-induced exaggeration of a native function of the host protein.  相似文献   

18.
Experiments in yeast have significantly contributed to our understanding of general aspects of biochemistry, genetics, and cell biology. Yeast models have also delivered deep insights in to the molecular mechanism underpinning human diseases, including neurodegenerative diseases. Many neurodegenerative diseases are associated with the conversion of a protein from a normal and benign conformation into a disease-associated and toxic conformation - a process called protein misfolding. The misfolding of proteins with abnormally expanded polyglutamine (polyQ) regions causes several neurodegenerative diseases, such as Huntington's disease and the Spinocerebellar Ataxias. Yeast cells expressing polyQ expansion proteins recapitulate polyQ length-dependent aggregation and toxicity, which are hallmarks of all polyQ-expansion diseases. The identification of modifiers of polyQ toxicity in yeast revealed molecular mechanisms and cellular pathways that contribute to polyQ toxicity. Notably, several of these findings in yeast were reproduced in other model organisms and in human patients, indicating the validity of the yeast polyQ model. Here, we describe different expression systems for polyQ-expansion proteins in yeast and we outline experimental protocols to reliably and quantitatively monitor polyQ toxicity in yeast.  相似文献   

19.
Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号