首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Uridine phosphorylase from Escherichia coli has been purified to homogeneity. The enzyme was found to have a molecular weight of 176000 and to consist of 8 probably identical subunits with molecular weights of 22000. These numbers were determined from equilibrium centrifugations in the analytical ultracentrifuge, from dodecylsulphate gel electrophoresis and from amino acid analysis. Moreover the following physico-chemical constants were determined: s020,w = 8.2 x 10(-13) s, upsilon2 = 0.751 cm3/g, A1%280 (1 cm) = 6.73 and a specific activity of 183 units/mg towards uridine. The enzyme shows some activity towards deoxyuridine and thymidine. The activity is not impaired through substitution by bromo, fluoro or methyl groups in the 5-position of the uracil base, but no enzymatic activity is observed when cytosine base is used in the nucleoside substrate.  相似文献   

2.
—Uridine phosphorylase (uridine: orthophosphate ribosyltransferase; EC 2.4.2.3) from rat brain was purified and its properties were studied. The enzyme resembled preparations made from other mammalian sources. Its pH optimum was between 7·6 and 8·0. An examination of its action on various substrates showed rates of reaction in the order: uridine > deoxyuridine > thymidine > cytidine. The enzyme showed a requirement for phosphate which could also be satisfied by arsenate. The activity of the enzyme was protected from heat inactivation by uridine and by phosphate. In brain and liver the activity of the enzyme increased five- to ten-fold between 10 and 20 days of life. Injections of cortisol or of uridine did not increase the enzymic activity.  相似文献   

3.
4-Thiouridine and 4-thiothymidine were developed as efficient substrates for spectrophotometric determination of uridine phosphorylase and thymidine phosphorylase activity. 4-Thiouridine has maximum absorbance at 330 nm (pH 7.5). The change in extinction coefficient for 4-thiouridine/4-thiouracil, deltaepsilon is 3000 M(-1) x cm(-1). It appeared that 4-thiouridine is a good substrate for uridine phosphorylase with Michaelis-Menten constant 130 microM and kcat 49 s(-1). In the case of 4-thiothymidine/4-thiothymine deltaepsilon is even larger: 5000 M(-1) x cm(-1) at 336 nm.  相似文献   

4.
Substrate-stabilization of uridine phosphorylase (uridine:orthophosphate ribosyltransferase, EC 2.4.2.3), thymidine phosphorylase (thymidine:orthophosphate deoxyribosyltransferase, EC 2.4.2.4) and purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) from Escherichia coli was investigated by heat-inactivation experiments. Nucleoside substrates stabilized uridine phosphorylase and purine-nucleoside phosphorylase, but not thymidine phosphorylase. Aglycone substrates stabilized only uridine phosphorylase. Phosphate or pentose-1-phosphate ester substrates stabilized all three enzymes. The appropriate pentose-1-phosphate ester was a more effective stabilizer than was phosphate with all three enzymes. In previous reports dealing with the kinetic analysis of these phosphorylases, sequential mechanisms were proposed. Each enzyme appeared to have different sequence of substrate addition. The substrate-stabilization patterns reported here are consistent with the proposed mechanisms.  相似文献   

5.
Salmonella enterica serovar Typhimurium normally salvage nucleobases and nucleosides by the action of nucleoside phosphorylases and phosphoribosyltransferases. In contrast to Escherichia coli, which catabolizes xanthosine by xanthosine phosphorylase (xapA), Salmonella cannot grow on xanthosine as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 kDa that can hydrolyze xanthosine, inosine, adenosine and uridine with similar catalytic efficiency (k(cat)/Km=1 to 4 x 10(4) M(-1)s(-1)). Cytidine and guanosine is hydrolyzed with approximately 10-fold lower efficiency (k(cat)/Km=0.7 to 1.2 x 10(3) M(-1)s(-1)) while RihC is unable to hydrolyze the deoxyribonucleosides thymidine and deoxyinosine. The Km for all nucleosides except adenosine is in the mM range. The pH optimum is different for inosine and xanthosine and the hydrolytic capacity (k(cat)/Km) is 5-fold higher for xanthosine than for inosine at pH 6.0 while they are similar at pH 7.2, indicating that RihC most likely prefers the neutral form of xanthosine.  相似文献   

6.
Uridine phosphorylase activity was detected in sonic extracts of six different mammalian cell lines and, in conjunction with uridine kinase, provides a route for the conversion of uracil to UMP via uridine. Uracil phosphoribosyl transferase activity was not detected in any of eight different mammalian cell lines. Uridine phosphorylase was purified 5,330-fold from Novikoff rat hepatoma cells by ammonium sulfate precipitation, DEAE-Sephadex chromatography, hydroxyapatite chromatography, and Sephadex G-200 fractionation. The molecular weight of the enzyme by gel filtration was approximately 45,000. The kinetics of the purified enzyme were analyzed with respect to all four substrates at saturating cosubstrate concentration, yielding the parameters KmUra = 360 microM, KmRib-1-P = 88 microM, KmUrd = 16 micron, and KmPi = 130 microM. However, in intact cells the phosphorolysis of uridine proceeded with an apparent Km of 231 microM. Novikoff cells treated with 0.5 mM inosine exhibited an increase in uracil uptake rate which was proportional to an observed increase in intracellular ribose-1-phosphate. Nevertheless, in cells whose de novo synthesis of pyrimidines was blocked by pyrazofurin or N-(phosphonacetyl)-L-aspartate ("PALA"), the uptake of uracil was insufficient to support proliferation, even when enhanced by inosine. These observations are consistent with the kinetic characteristics of the enzyme and provide evidence that the intracellular level of ribose-1-phosphate plays a rate-limiting role in the uptake of uracil mediated by uridine phosphorylase.  相似文献   

7.
Thymidine is poorly incorporated into deoxyribonucleic acid (DNA) of Escherichia coli. Its incorporation is greatly increased by uridine, which acts in two ways. Primarily, uridine competitively inhibits thymidine phosphorylase (E.C.2.4.4), and thereby prevents the degradation of thymidine to thymine which is not incorporated into normally growing E. coli. Uridine also inhibits induction of the enzyme by thymidine. It prevents the actual inducer, probably a deoxyribose phosphate, from being formed rather than competing for a site on the repressor. The inhibition of thymidine phosphorylase by uridine also accounts for inhibition by uracil compounds of thymine incorporation into thymine-requiring mutants. Deoxyadenosine also increases the incorporation of thymidine, by competitively inhibiting thymidine phosphorylase. Deoxyadenosine induces the enzyme, in contrast to uridine. But this is offset by a transfer of deoxyribose from deoxyadenosine to thymine. Thus, deoxyadenosine permits incorporation of thymine into DNA, even in cells induced for thymidine phosphorylase. This incorporation of thymine in the presence of deoxyadenosine did not occur in a thymidine phosphorylase-negative mutant; thus, the utilization of thymine seems to proceed by way of thymidine phosphorylase, followed by thymidine kinase. These results are consistent with the data of others in suggesting that wild-type E. coli cells fail to utilize thymine because they lack a pool of deoxyribose phosphates, the latter being necessary for conversion of thymine to thymidine by thymidine phosphorylase.  相似文献   

8.
Uptake of uridine by a long-day duckweed, Lemna gibba G3 wasexamined. Km and Vmax for uptake were in the range of 1 to 2x10–5 M and of 5 to 10 x10–8 moles/g fresh weight/2hr, respectively. Uptake rate depended on temperature, and theoptimum pH was 5.0. Uridine uptake was competitively inhibitedby some compounds structurally analogous to uridine. However,the activity of uridine kinase was not affected by these compounds,except for cytidine. Uridine uptake was inhibited by metabolicinhibitors, in which uridine taken up was left unconverted toother forms, especially in the presence of DNP. These resultssuggest that uridine was taken up into the duckweed celb bya specific transport system and immediately phosphorylated byuridine kinase. Phosphorylation of uridine was not associatedwith the uridine transport reaction. (Received November 15, 1976; )  相似文献   

9.
5'-Methylthioadenosine phosphorylase has been isolated from C.acidophila, a thermophilic bacterium living in acid hot springs at temperatures ranging from 63 to 89 degrees C. The enzyme has been purified to homogeneity in 32% yield. The enzyme shows a high degree of thermophilicity, its temperature optimum being 93 degrees C in the in vitro assay. The enzyme is exceptionally stable; no loss of activity was observable after exposure for 1 h at 100 degrees C. The optimum pH is about 7,2, with one-half of the maximal activity occurring at pH 6 and 9. The apparent Km for the substrates are: 8,3 x 10(-5) M for MTA and 4,3 x 10(-4) M for phosphate ions.  相似文献   

10.
In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to preferentially colonize tumour tissue in cancer patients, catabolic mycoplasma enzymes may compromise efficient chemotherapy of virus infections and cancer. In the genome of M. hyorhinis, a TP (thymidine phosphorylase) gene has been annotated. This gene was cloned, expressed in Escherichia coli and kinetically characterized. Whereas the mycoplasma TP efficiently catalyses the phosphorolysis of thymidine (Km=473 μM) and deoxyuridine (Km=578 μM), it prefers uridine (Km=92 μM) as a substrate. Our kinetic data and sequence analysis revealed that the annotated M. hyorhinis TP belongs to the NP (nucleoside phosphorylase)-II class PyNPs (pyrimidine NPs), and is distinct from the NP-II class TP and NP-I class UPs (uridine phosphorylases). M. hyorhinis PyNP also markedly differs from TP and UP in its substrate specificity towards therapeutic nucleoside analogues and susceptibility to clinically relevant drugs. Several kinetic properties of mycoplasma PyNP were explained by in silico analyses.  相似文献   

11.
1. The activity of mannosyl- and N-acetylglucosamine-1-phosphate transferases in microsomes from pig embryonic liver was linear to 1 min of incubation at 37 degrees C. 2. The activity of both enzymes was higher in the presence of Mg2+ as compared to Mn2+. A maximal stimulatory effect of Mn2+ was obtained at 2 mM concentration and greater concentrations of it inhibited the activities of both enzymes. 3. The activity of mannosyl transferase was found to be highest after treatment of microsomes with Nonidet P-40 while the activity of N-acetylglucosamine-1-phosphate transferase was greatest in the presence of sodium deoxycholate. 4. The Km for acceptor substrate was 1.6 x 10(-5)M in the reaction for dolichol phosphate mannose synthesis and 2.2 x 10(-5)M in the reaction for dolichol pyrophosphate N-acetylglucosamine formation. 5. The Km for GDP-mannose was 1.4 x 10(-5)M and for UDP-N-acetylglucosamine-6.2 x 10(-5)M. At saturating concentrations of donor substrates V values (pmol/min/mg) were 1330 and 150, respectively.  相似文献   

12.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

13.
The kinetics of conversion of 5-fluoro-2'-deoxyuridine (FdUrd) to 5-fluorouracil (FUra) by isolated rat intestinal epithelial cells was investigated. Also, the effects of potential inhibitors of this reaction, which is catalyzed by uridine phosphorylase and thymidine phosphorylase, were determined. A 2.5% suspension of isolated cells was incubated with FdUrd or FUra, and at specific times cells were lysed with perchloric acid and fluoropyrimidines were determined by high-performance liquid chromatography. During a 25-min incubation with either FdUrd or FUra, the amount of drug in the incubation system (total volume 0.8 ml) fell by less than 5%. However, in the presence of FdUrd, the amount of FUra increased linearly over 25 min. The apparent Vmax and Km for FUra formation were 17-27 nmole/mg DNA/min and 1.6-2.5 mM, respectively. With each nucleoside phosphorylase inhibitor, the apparent Km increased but Vmax was unaffected. The apparent Ki values were as follows (in mM): 5-nitrouracil (an inhibitor of both uridine phosphorylase and thymidine phosphorylase), 0.12; 4-thiothymine (a uridine phosphorylase-selective inhibitor), 1.52; and 6-benzyl-2-thiouracil (a thymidine phosphorylase-selective inhibitor), 0.73. It was concluded that intestinal epithelial cells are capable of degrading FdUrd to FUra and that the cells possess both uridine phosphorylase and thymidine phosphorylase activity.  相似文献   

14.
Plasma membranes were isolated from rat liver homogenates either by differential centrifugation or by fractionation in discontinuous sucrose density gradients. Both membrane preparations contained about 17% of the total uridine phosphorylase (EC 2.4.2.3) activity and 44% of the total 5'-nucleotidase (EC 3.1.3.5). The enrichment factor for uridine phosphorylase in the fractions prepared by differential centrifugation was about 2.8 and by the gradient method, as much as 11.0; the respective enrichment factors for 5'-nucleotidase were 1.8 and 9.5. Uridine phosphorylase activity of isolated plasma membrane fractions was stimulated 2.5-fold by 0.1% Triton X-100. Unlike the cytosol enzyme, uridine phosphorylase of plasma membranes showed little or no deoxyuridine-cleaving activity. Contamination of the membrane fractions by thymidine phosphorylase (EC 2.4.2.4) of the cytosol was negligible. The other subcellular organelles obtained by either procedure and characterized by marker enzyme activities were found not to contain significant uridine phosphorylase activity; the cytosol fractions contained just over 70% of the total uridine phosphorylase activity with an enrichment of only about 2.8-fold. The activity of the cytosol enzyme was not stimulated by Triton X-100.  相似文献   

15.
The characteristics of nucleoside transport were examined in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. In Walker 256 cells the initial rates of uridine, thymidine and adenosine uptake were insensitive to the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR) (1 microM), but were partially inhibited by dipyridamole (10 microM), another inhibitor of nucleoside transport. In contrast, the transport of these nucleosides in S49 cells was completely blocked by both inhibitors. Nucleoside transport in Walker 256 and S49 cells also differed in its sensitivity to the thiol reagent p-chloromercuribenzenesulphonate (pCMBS). Uridine transport in Walker 256 cells was inhibited by pCMBS with an IC50 (concentration producing 50% inhibition) of less than 25 microM, and inhibition was readily reversed by beta-mercaptoethanol. In S49 cells uridine transport was only inhibited at much higher concentrations of pCMBS (IC50 approximately equal to 300 microM). In other respects nucleoside transport in Walker 256 and S49 cells were quite similar. The Km and Vmax. values for uridine transport were nearly identical, and the transporters of both cell lines appeared to accept a broad range of nucleosides as substrates. Uridine transport in Walker 256 cells was non-concentrative and did not require an energy source. These studies demonstrate that nucleoside uptake in Walker 256 cells is mediated by a facilitated-diffusion mechanism which differs markedly from that of S49 cells in its sensitivity to the transport inhibitor NBMPR and the thiol reagent pCMBS.  相似文献   

16.
Proteinase activities in malignant and normal lung tissues were measured using two synthetic substrates that consist of a fluorophor coupled to a peptide moiety. The hydrolysis of CBZ-Val-Lys-Lys-Arg-4-methoxy-2-naphthylamide and BZ-Gly-Gly-Arg-4-methoxy-2-naphthylamide were studied in homogenates of two types of mouse lung tumors, the Lewis lung tumor of the C57 black mouse and the KHT tumor of the C3H mouse. The activity of CBZ-Val-Lys-Lys-Arg-4-methoxy-2-naphthylamide hydrolysis had a pH optimum of 6.3 and a Km of 2.1 x 10(-4) M, required a thiol activator, and was inhibited by leupeptin suggesting the activity of a cathepsin B-like enzyme. The activity of BZ-Gly-Gly-Arg-4-methoxy-2-naphthylamide hydrolysis had a pH optimum of 6.7 and a Km of 3 x 10(-5) M. Lung tumor homogenates contained higher hydrolytic activities for both substrates than normal lung homogenates.  相似文献   

17.
Uridine phosphorylase is the only pyrimidine nucleoside cleaving activity that can be detected in extracts of Schistosoma mansoni. The enzyme is distinct from the two purine nucleoside phosphorylases contained in this parasite. Although Urd is the preferred substrate, uridine phosphorylase can also catalyze the reversible phosphorolysis of dUrd and dThd, but not Cyd, dCyd, or orotidine. The enzyme was purified 170-fold to a specific activity of 2.76 nmol/min/mg of protein with a 16% yield. It has a Mr of 56,000 as determined by molecular sieving on Sephadex G-100. The mechanism of uridine phosphorylase is sequential. When Urd was the substrate, the KUrd = 13 microM and the KPi = 533 +/- 78 microM. When dThd was used as a substrate, the KdThd = 54 microM and the KPi = 762 +/- 297 microM. The Vmax with dThd was 53 +/- 9.8% that of Urd. dThd was a competitive inhibitor when Urd was used as a substrate. The enzyme showed substrate inhibition by Urd, dThd (greater than 0.125 mM) and phosphate (greater than 10 mM). 5-(Benzyloxybenzyloxybenzyl)acyclouridine was identified as a potent and specific inhibitor of parasite (Ki = 0.98 microM) but not host uridine phosphorylase. Structure-activity relationship studies suggest that uridine phosphorylase from S. mansoni has a hydrophobic pocket adjacent to the 5-position of the pyrimidine ring and indicate differences between the binding sites of the mammalian and parasite enzymes. These differences may be useful in designing specific inhibitors for schistosomal uridine phosphorylase which will interfere selectively with nucleic acids synthesis in this parasite.  相似文献   

18.
Homogeneous glycogen phosphorylase from human leukocytes has been obtained. A one-step bioluminescent procedure for the enzyme activity assay has been developed. This method is based on a continuous recording of the product of the glycogen phosphorylase-catalyzed reaction using a coimmobilized multienzyme system (phosphoglucomutase, glucose-6-phosphate dehydrogenase, NADH:FMN oxidoreductase and bacterial luciferase). The method sensitivity is 10 times as high compared to earlier described methods. The Km values for glycogen (0.2 mg/ml) and phosphate (3.9 mM) at pH 7.9 were determined. AMP was shown to be the enzyme effector.  相似文献   

19.
The incorporation of exogenous thymidine and thymine into acid-insoluble material of Thermoactinomyces vulgaris has been studied during germination and subsequent growth. Thymine is not incorporated. The incorporation of thymidine stops after a short time due to the rapid breakdown of thymidine to thymine and deoxyribose-1-phosphate by the inducible thymidine phosphorylase. Deoxyadenosine enhances the incorporation of thymidine as well as of thymine and prolongs the tine of uptake. Uridine stimulates only the incorporation of thymidine but not of thymine. These effects can be explained by the function of these substances within the salvage pathway. Deoxyadenosine acts as donor of deoxyribosyl groups being necessary for the conversion of thymine to thymidine by thymidine phosphorylase and uridine inhibits thymidine phosphorylase, and thereby it prevents the degradation of thymidine to thymine. Thymidine is incorporated into alkali-, RNase-and protease-stable, hot TCA-soluble and DNase-sensitive material. That means that the cellular DNA of T. vulgaris can be specifically labelled by radioactive thymidine in the presence of deoxyadenosine and uridine, respectively.  相似文献   

20.
Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway that catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Inhibiting liver UP in humans raises blood uridine levels and produces a protective effect ("uridine rescue") against the toxicity of the chemotherapeutic agent 5-fluorouracil without reducing its antitumour activity. We have investigated UP-substrate interactions by determining the crystal structures of native Escherichia coli UP (two forms), and complexes with 5-fluorouracil/ribose 1-phosphate, 2-deoxyuridine/phosphate and thymidine/phosphate. These hexameric structures confirm the overall structural similarity of UP to E.coli purine nucleoside phosphorylase (PNP) whereby, in the presence of substrate, each displays a closed conformation resulting from a concerted movement that closes the active site cleft. However, in contrast to PNP where helix segmentation is the major conformational change between the open and closed forms, in UP more extensive changes are observed. In particular a swinging movement of a flap region consisting of residues 224-234 seals the active site. This overall change in conformation results in compression of the active site cleft. Gln166 and Arg168, part of an inserted segment not seen in PNP, are key residues in the uracil binding pocket and together with a tightly bound water molecule are seen to be involved in the substrate specificity of UP. Enzyme activity shows a twofold dependence on potassium ion concentration. The presence of a potassium ion at the monomer/monomer interface induces some local rearrangement, which results in dimer stabilisation. The conservation of key residues and interactions with substrate in the phosphate and ribose binding pockets suggest that ribooxocarbenium ion formation during catalysis of UP may be similar to that proposed for E.coli PNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号