首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
在四川卧龙国家自然保护区,以天然落叶阔叶林(约100年生)为对照,选择新种植(5年生)、幼年(15年生)和成熟(45年生)的3种落叶松种植林,采用引诱法分别在地表和地上1.5 m处取样,研究处于不同恢复阶段林地中的嗜尸性甲虫物种多样性及其变化格局。共采集甲虫标本3 066号,其中隐翅虫、球蕈甲和埋葬甲科分别占总个体数的43.71%、31.83%和17.97%。嗜尸性甲虫的多度格局呈对数正态分布,随着落叶松林树龄的增长,其分布格局更加接近天然林。物种丰富度和多样性在3种落叶松林内均显著低于天然林,且在3种落叶松林中,新种植的最低。主坐标分析排序和聚类分析表明,不同树龄的落叶松林和天然阔叶林间的嗜尸性甲虫群落组成存在显著差异。以上结果表明,落叶松种植林尚无法取代天然落叶阔叶林在维持嗜尸性甲虫物种多样性中的作用。  相似文献   

2.
木生苔藓植物是原始森林的基本组成部分,其生长和分布对林窗和粗木质残体(CWD)等环境因子的响应可能非常敏感,但林窗和CWD对木生苔藓植物群落的影响研究未见报道。因此,我们研究了高山森林不同林窗位置(林窗、林缘和林下)和不同粗木质残体类型(倒木、大枯枝、枯立木和根桩)木生苔藓生物量(储量、单位面积生物量和生物积累量)和多样性(Shannon多样性指数、Simpson优势度指数和Pielou均匀度指数)特征。结果表明:川西高山粗木质残体木生苔藓植物生物量储量为141.14 kg/hm~2,倒木生苔藓生物量储量最大为78.80 kg/hm~2,枯立木生苔藓生物量储量最小为3.11 kg/hm~2。其中,第III、IV腐解等级粗木质残体木生苔藓生物量储量较高,在I腐解等级时为最低。整体来看不同粗木质残体类型木生苔藓单位面积生物量均在林缘最高,但不同粗木质残体类型单位面积木生苔藓生物量积累量差异显著。木生苔藓生物多样性受林窗位置和粗木质残体类型显著影响。倒木、大枯枝和根桩的苔藓Simpson优势度指数从林窗至林下均为下降趋势。倒木的苔藓Shannon多样性指数和Pielou均匀度指数在林下最高,在林缘最低。林窗大枯枝木生苔藓三种多样性指标均大于倒木。枯立木和根桩木生苔藓多样性指标随林窗变化表现各异。研究也发现,曲尾藓(Dicranum)和平藓(Neckera)在川西高山苔藓生物量中比重较大。我们的研究结果表明在高山森林生态系统中,林缘效应对木生苔藓生物量具有促进作用,但对木生苔藓生物多样性的影响作用不明显。这也意味着,森林更新导致林窗形成和CWD产生对木生苔藓生长具有显著影响。  相似文献   

3.
木腐真菌在森林生态系统中具有丰富的物种多样性, 并在倒木的降解过程中发挥重要的生态功能。针叶树是大小兴安岭森林生态系统的优势树种, 因此研究针叶树倒木木腐真菌物种多样性和影响其物种分布的相关环境因子有助于揭示大小兴安岭森林生态系统物质循环的机理。本研究收集了近16年对大小兴安岭地区冷杉属(Abies)、落叶松属(Larix)、云杉属(Picea)和松属(Pinus) 4类针叶树倒木上1,561份木腐真菌标本的采集信息, 统计了物种种类及其腐朽类型, 并选取具有代表性的地点开展木腐真菌群落多样性及其与环境因子的相关性分析。结果显示, 大小兴安岭针叶树倒木木腐真菌有166种, 隶属于70属, 其中白腐真菌有111种, 占所有种类的66.9%, 褐腐真菌为55种, 占所有种类的33.1%。在4类针叶树倒木上均能生长的真菌种类有19种, 占所有种类的11.5%, 其中柔丝干酪孔菌(Oligoporus sericeomollis)是各类倒木上木腐真菌群落中的优势种。大兴安岭地区落叶松属为优势寄主, 其倒木上生长的木腐真菌种类数和个体数在4类倒木中均为最高; 而小兴安岭地区松属倒木上木腐真菌种类数和个体数比其他3类倒木高, 是该地区的优势寄主。对6个代表性地区木腐真菌群落的研究显示, 有11种真菌在6个地区均有分布, 小兴安岭地区木腐真菌多样性普遍高于大兴安岭地区; 聚类分析显示树种比地理位置对木腐真菌物种分布的影响更大。  相似文献   

4.
卧龙自然保护区落叶松林不同恢复阶段地表甲虫的多样性   总被引:1,自引:0,他引:1  
在四川卧龙国家自然保护区,以落叶松种植林邻近的天然落叶阔叶林(100年生,5块样地)为对照,分别选择刚种植(5年生)、幼年期(15年生)和成熟期(45年生)的3种落叶松林各4块样地,每个样地4个重复,研究森林不同恢复阶段地表甲虫的多样性。通过巴氏罐诱法取样,采集甲虫标本共7444号。步甲科、隐翅虫科和拟步甲科分别占总数的40·2%、38·3%和6·4%,共同构成本研究地区的优势类群。甲虫的科丰富度、多样性和均匀度在3种落叶松林内显著高于天然林,且在3种落叶松林中,刚种植的最高,幼年期的最低;个体数量正相反,天然林显著高于落叶松林,而且3种落叶松林内,幼年期最高,刚种植的最低。主坐标分析排序和聚类分析表明,不同树龄的落叶松林和天然阔叶林间的地表甲虫群落组成存在显著差异,成熟期落叶松林与幼年期落叶松林和天然阔叶林有较高的相似性。甲虫个体数量的季节变化在3种落叶松林内相似性很高,与天然阔叶林差异显著,而科丰富度、多样性和均匀度的季节变化在3种落叶松林以及天然阔叶林间相似性都很低。多元回归分析表明,林冠层、草本层及枯落物的高(厚)度和覆盖率是决定科丰富度、个体数量、多样性和均匀度的决定因素。以上结果表明,在科级水平上,地表甲虫群落组成在不同树龄的落叶松林以及天然落叶阔叶林内存在显著差异,虽然成熟期的落叶松林已经具有了部分天然阔叶林的甲虫群落特点,但仍无法完全恢复到天然林的群落水平。因此,在鼓励森林恢复的同时,保留大面积的天然落叶阔叶林免受破坏和干扰仍然是保护地表甲虫群落的必要措施。  相似文献   

5.
天宝岩3种典型森林类型CWD持水能力的比较   总被引:3,自引:0,他引:3  
对天宝岩国家级自然保护区3种典型森林类型内粗死木质残体(CWD)的持水量进行研究。结果表明,柳杉(Crytomeria fortunei)林内CWD的持水量最低;不同森林类型各类CWD的水分蓄持能力不同,猴头杜鹃(Rhododendron simiarum)林内以倒木枯立木树桩,长苞铁杉(Tsuga longibracteata)林和柳杉林内为枯立木倒木树桩;CWD有效持水量和自然含水率随CWD腐烂程度增加呈上升趋势。  相似文献   

6.
人为干扰对大兴安岭北坡兴安落叶松林粗木质残体的影响   总被引:2,自引:0,他引:2  
比较了兴安落叶松天然林和两种不同干扰类型兴安落叶松林(一次干扰林、二次干扰林)之间活立木蓄积、粗木质残体(CWD)蓄积和组成的差异.结果表明:天然林、一次干扰林和二次干扰林的活立木蓄积量分别为161.6、138.3和114.8 m3·hm-2,粗木质残体的蓄积量分别为69.77、36.64和32.61 m3·hm-2.天然林粗木质残体大部分径级在20~40 cm,其中倒木、枯立木分别占总材积的72%和28%;一次干扰林和二次干扰林粗木质残体大部分径级在10~30 cm,其中倒木、枯立木和伐桩分别占各自总材积的70%、14%、16%和57%、15%、28%.人为干扰造成兴安落叶松林粗木质残体蓄积减少,改变了粗木质残体的组成.  相似文献   

7.
广东省森林死木碳库特征   总被引:3,自引:3,他引:0  
赵嘉诚  李海奎 《生态学报》2018,38(2):550-559
基于广东省第8次国家森林资源清查的固定样地调查数据和2016年典型抽样的死木调查数据,利用分树种、分腐朽程度的各个组分相兼容的生物量模型以及相对应的地上、地下部分含碳系数,对广东省森林死木碳库动态进行估算,分析死木种类、林分类型和龄组对死木碳库的影响,量化林分生长特性和自然灾害对死木碳库的贡献。结果表明:2007—2012年间广东省乔木林死木碳库新增碳储量5811.86 Pg,占同期乔木林活立木碳库的2.94%,其中枯倒木多于枯立木;阔叶混交林和马尾松林贡献了近70%的死木碳储量;马尾松、其他软阔、湿地松、阔叶混交林和其他硬阔的死木碳储量占同类森林总活立木碳储量的比例较大,均超过4.00%,桉树和杉木比例最小,均不足1.00%;从龄组看,发生在中龄林的死木碳储量占总死木碳储量比例最大,过熟林最小。与同龄组林分的现存碳储量相比,从幼龄林(2.03%)到过熟林(4.56%)基本呈上升趋势。全省新增死木库碳密度为(0.7612±3.3988)Mg/hm~2。竞争和衰老引起的枯死在林分中普遍存在,占发生死木林分面积的60%以上,但增加到死木碳库的储量不足总量的四分之一,而自然灾害只占发生死木林分面积的10%,对死木碳库的贡献却超过40%。到2016年,2007—2012年间增加到死木库的碳储量下降到785.57 Pg,减少约85%,枯倒木的腐朽程度重于枯立木,不同树种间腐朽程度不一,杉木腐朽程度最低。清林等人为经营活动和死木的腐朽是存量减少的主要原因。  相似文献   

8.
人为干扰对大兴安岭北坡兴安落叶松林粗木质残体的影响   总被引:4,自引:0,他引:4  
比较了兴安落叶松天然林和两种不同干扰类型兴安落叶松林(一次干扰林、二次干扰林)之间活立木蓄积、粗木质残体(CWD)蓄积和组成的差异.结果表明:天然林、一次干扰林和二次干扰林的活立木蓄积量分别为161.6、138.3和114.8 m3·hm-2,粗木质残体的蓄积量分别为69.77、36.64和32.61 m3·hm-2.天然林粗木质残体大部分径级在20~40 cm,其中倒木、枯立木分别占总材积的72%和28%;一次干扰林和二次干扰林粗木质残体大部分径级在10~30 cm,其中倒木、枯立木和伐桩分别占各自总材积的70%、14%、16%和57%、15%、28%.人为干扰造成兴安落叶松林粗木质残体蓄积减少,改变了粗木质残体的组成.  相似文献   

9.
丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系   总被引:1,自引:0,他引:1  
木腐真菌是一类以木材为生长基质的大型真菌, 通过分泌各种水解酶全部或部分降解木材中的木质素、纤维素和半纤维素, 促进森林生态系统的物质循环, 具有重要的生态功能。本研究调查了丰林国家级自然保护区固定样地中木腐真菌的多样性和倒木特征, 并进行了木腐真菌的物种多样性和数量与倒木的种类、数量、腐朽程度、直径大小等的相关性分析。结果显示: 在样地内共采集木腐真菌标本295份, 经鉴定为93种, Shannon多样性指数为3.86, Simpson指数为0.96。相关性分析发现木腐真菌的数量和种类与直径为2-5 cm和5-10 cm的倒木、2级腐烂的倒木和红松倒木均显著相关。样地中优势倒木寄主分别为槭属(Acer)、榛属(Corylus)、云杉属(Picea)和松属(Pinus), 这4类倒木上生长的木腐真菌种类组成具有明显的差异, 槭属和榛属倒木上的共有优势种主要是三色拟迷孔菌(Daedaleopsis tricolor)、云芝(Trametes versicolor)和桦附毛孔菌(Trichaptum pargamenum), 而松属和云杉属的共有优势种主要有白囊耙齿菌(Irpex lacteus)、云芝、冷杉附毛孔菌(Trichaptum abietinum)和褐紫附毛孔菌(T. fuscoviolaceum)。倒木产生真菌子实体的概率研究表明, 同一类寄主倒木上发生木腐真菌子实体的概率在调查面积增加到0.36 ha后趋于一个定值, 松属倒木中仅有10.2%产生真菌子实体, 槭属和云杉属分别是12.9%和13.4%, 榛属最高, 达到53.7%。本研究结果对于预测森林生态系统中木腐真菌的发生具有重要理论意义。  相似文献   

10.
杨寅  邱钰明  王中斌  汪海霞  曲来叶 《生态学报》2021,41(23):9399-9409
为探究内蒙古根河大兴安岭林区重度火烧迹地不同生长状态的兴安落叶松根际土壤真菌群落特征,选取火烧枯立木(BDW)、火烧存活木(BSW)、未火烧对照木(CK),通过磷脂脂肪酸方法分析根际土壤真菌群落生物量变化,利用高通量测序技术对根际土壤真菌群落组成与功能进行分析,探讨影响根际土壤真菌群落的主要环境因子。结果表明:(1)相较于未火烧对照木,火烧枯立木与火烧存活木根际土壤真菌群落磷脂脂肪酸含量显著降低,真菌群落α多样性显著降低。β多样性分析与群落相似性分析结果显示,火烧枯立木、火烧存活木、未火烧对照木根际土壤真菌群落组成存在显著差异。(2)相较于未火烧对照木,火烧枯立木与火烧存活木根际土壤中担子菌门(Basidiomycota)真菌相对丰度显著下降,子囊菌门(Ascomycota)真菌相对丰度显著升高。子囊菌门(Ascomycota)内,火烧枯立木根际土壤中内生真菌相对丰度显著高于火烧存活木与未火烧对照木,而火烧存活木根际土壤中腐生-外生菌根复合型真菌相对丰度显著高于火烧枯立木与未火烧对照木。(3)根际土壤总磷、总钾含量是影响重度火烧迹地兴安落叶松根际土壤真菌群落优势菌门由担子菌门(Basidiomycota)转变为子囊菌门(Ascomycota)的主要环境因子,而根际土壤总碳、总氮、总磷含量则是造成火烧枯立木与火烧存活木根际土壤真菌群落组成与功能差异的主要环境因子。本研究有助于了解大兴安岭林区土壤真菌群落结构,对真菌群落多样性的维持与管理具有参考价值。  相似文献   

11.
Retention of snags (standing dead trees) is considered to have important effects on saproxylic species conservation in plantation forests because snags would provide vertically stratified deadwood habitats. However, the vertical distribution of saproxylic insects within snag trunks is still unclear. We felled 33 naturally occurring snags of Todo fir Abies sachalinensis in plantation forests and extracted insects from 99 logs sampled from three vertical positions of the snag trunks (basal stem: <2.5 m, lower trunk: 2.5–5 m and upper trunk: >5 m). The mean number of species that emerged from a single log was only 2.69, but we identified 51 morphospecies of saproxylic beetles in total. The total number of species that emerged from the basal stem (34 spp.) was greater than those that emerged from the lower trunk (25 spp.) or the upper trunk (30 spp.). However, rarefaction-extrapolation analysis did not demonstrate a significant difference in species richness among the log positions. Beetle assemblages were separated into two groups by constrained correspondence analysis; one group emerged only from lower and upper trunk logs, while another emerged mainly from basal stem logs. Additionally, vertical position had a significant effect on the distribution of the five main species. Our results show that beetle assemblages within snags in the plantation forests were highly variable, and retaining a sufficient number of high stumps may be important for saproxylic beetle conservation in plantation forests. We propose ‘retention thinning’ as an appropriate method to combine efficient timber production with biodiversity conservation in plantation forests.  相似文献   

12.
Saproxylic beetles constitute a significant proportion of boreal forest biodiversity. However, the long history of timber production in Fennoscandia has significantly reduced the availability of dead wood and is considered a threat to the conservation of saproxylic beetle assemblages. Therefore, since the mid‐1990s dead wood retention in harvested stands has formed an integral part of silvicultural practices. However, the contribution of this biodiversity‐orientated management approach to conserving saproxylic beetle assemblages in boreal forest landscapes that include production forestry remains largely untested. We examined differences in resident saproxylic beetle assemblages among stands under different management in a boreal forest landscape in Central Sweden, and in particular stands managed according to new conservation‐orientated practices. We also investigated the relationship between beetle diversity and forest stand characteristics. Bark of coarse woody debris (CWD) was sieved for beetles in old managed stands, unmanaged nature reserves, and set‐aside areas, and clear‐cut stands harvested according to certification guidelines [new forestry (NF) clear‐cuts]. All stand types contributed significantly to the total diversity of beetles found. While stand size, position, and distance to nearest reserve were unimportant, both the quality and the quantity of CWD in stands contributed significantly to explaining beetle abundance and species richness. This extends the previous findings for red‐listed invertebrates, and shows that heterogeneous substrate quality and a range of management practices are necessary to maintain saproxylic beetle diversity in boreal forest landscapes that include production forestry. The unique abiotic conditions in combination with the abundant and varied CWD associated with NF clear‐cuts form an important component of forest stand heterogeneity for saproxylic beetles. It is thus essential that sufficient, diverse, CWD is retained in managed boreal landscapes to ensure the conservation of boreal saproxylic beetle assemblages.  相似文献   

13.
The relationships between coarse woody material (CWM) and the diversity of three saproxylic beetle families (Cerambycidae, Melandryidae, and Curculionidae) were investigated. These three families responded differently toward the quality and quantity of CWM. The species richness of cerambycid beetles increased in forests with more CWM in the early stage of decomposition. The richness of saproxylic curculionids increased in stands with more tree species. No clear trend was evident for melandryid diversity. The CWM differed in quality and quantity among three forest types [middle-aged larch (Larix kaempferi [Lamb.] Carrière) plantation, secondary forest, and old-growth forest] and between two forest-management practices (thinning and long rotation). Forest type and management practices affected CWM and the number of tree species, and CWM and the number of tree species influenced the diversity of saproxylic families differently. Because each decomposition stage is considered to be important for saproxylic beetles at the species level, a constant supply of CWM is necessary to maintain a suitable balance of CWM through these decomposition stages in forests to maintain the diversity of saproxylic beetles.  相似文献   

14.
Intensive forestry practises in the Swedish landscape have led to the loss and fragmentation of stable old‐growth habitats. We investigated relationships between landscape composition at multiple scales and the composition of saproxylic beetle assemblages in nine clear‐cut, mature managed and old‐growth spruce‐dominated forest stands in the central boreal zone of Sweden. We set out fresh spruce and birch logs and created spruce snags in 2001–2002 to experimentally test the effects of coarse woody debris (CWD) type and forest management on the composition of early and late successional, and red‐listed saproxylic beetle assemblages. We examined effects of CWD availability at 100 m, and landscape composition at 1 and 10 km on saproxylic beetle abundances. Additionally, we tested whether assemblage similarity decreased with increasing distance between sites. We collected beetles from the experimental logs using eclector and window traps in four periods during 2003. CWD was measured and landscape composition data was obtained from maps of remotely sensed data. The composition of saproxylic beetles differed among different CWD substrates and between clear‐cuts and the older stand types, however differences between mature managed and old‐growth forests were significant only for red‐listed species. Assemblage similarities for red‐listed species on clear‐cuts were more different at greater distances apart, indicating that they have more localised distributions. CWD availability within 100 m of the study sites was rarely important in determining the abundance of species, suggesting that early successional saproxylic beetles can disperse further than this distance. At a larger scale, a large area of suitable stand types within both 1 and 10 km resulted in greater abundances in the study sites for several common and habitat‐specific species. The availability of suitable habitat at scales of 1–10 km is thus likely to be important in the survival of many saproxylic species in forestry‐fragmented areas.  相似文献   

15.
张念念  陈又清  卢志兴  张威  李可力 《昆虫学报》2013,56(11):1314-1323
橡胶树Hevea brasiliensis是云南省重要的经济林木, 但对其生态服务功能尚存在争议。本研究以天然次生林为对照, 使用Winkler法对橡胶林枯落物层蚂蚁进行初步研究, 探讨橡胶林枯落物层蚂蚁的生态状况。于2012年10月和2013年4月采用Winkler袋法调查了云南省绿春县大黑山乡橡胶林和牛孔乡天然次生林枯落物层蚂蚁群落的物种多样性、 群落结构差异及指示种。结果表明: 橡胶林枯落物层蚂蚁多度(转换后)、 物种丰富度S和ACE值显著低于无干扰的天然次生林(P<0.05); 蚂蚁多度(转换后)显著低于有干扰的天然次生林(P<0.05), 而物种丰富度S和ACE值差异不显著。橡胶林枯落物层蚂蚁群落结构与两种天然次生林都不相似(F=3.93, df=12, P<0.01)。橡胶林中流浪种大头蚁属Pheidole的蚂蚁种类与天然次生林相比, 物种丰富度增加了100%。天然次生林枯落物层中蚂蚁指示种有3种, 分别为刘氏隆头蚁Strumigenys lewisi、 黄足厚结猛蚁Pachycondyla luteipes和女娲角腹蚁Recurvidris nuwa, 而橡胶林枯落物层中指示种仅为菱结大头蚁Pheidole nodus。枯落物层蚂蚁物种多样性与枯落物厚度呈显著正相关, 而枯落物盖度仅与蚂蚁多度(转换后)有相关性。结果说明, 橡胶林经过长期的经营管理, 生态环境趋于稳定, 对枯落物层蚂蚁群落具有一定的保护作用, 但与天然次生林相比, 蚂蚁多度(转换后)及群落结构仍显示出明显的不同。  相似文献   

16.
Restoration of habitats is critically important in preventing full realization of the extinction debt owed as a result of anthropogenic habitat destruction. Although much emphasis has been placed on macrohabitats, suitable microhabitats are also vital for the survival of most species. The aim of this large-scale field experiment was to evaluate the relative importance of manipulated microhabitats, i.e., dead wood substrates of spruce (snags, and logs that were burned, inoculated with wood fungi or shaded) and macrohabitats, i.e., stand types (clear-cuts, mature managed forests, and forest reserves) for species richness, abundance and assemblage composition of all saproxylic and red-listed saproxylic beetles. Beetles were collected in emergence traps in 30 forest stands in 2001, 2003, 2004 and 2006. More individuals emerged from snags and untreated logs than from burned and shaded logs, but species richness did not differ among substrates. Assemblage composition differed among substrates for both all saproxylics and red-listed saproxylic species, mainly attributed to different assemblage composition on snags. This suggests that the practise of leaving snags for conservation purposes should be complemented with log supplementation. Clear-cuts supported fewer species and different assemblages from mature managed forests and reserves. Neither abundance, nor species richness or assemblage composition differed between reserves and mature managed forests. This suggests that managed stands subjected to selective cutting, not clear-felling, maintain sufficient old growth characteristics and continuity to maintain more or less intact assemblages of saproxylic beetles. Thus, alternative management methods, e.g., continuity forestry should be considered for some of these stands to maintain continuity and conservation values. Furthermore, the significantly higher estimated abundance per ha of red-listed beetles in reserves underlines the importance of reserves for maintaining viable populations of rare red-listed species and as source areas for saproxylic species in boreal forest landscapes.  相似文献   

17.
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.  相似文献   

18.
Modern forestry management has reduced the amount of dead wood in forest ecosystems and this has become a serious threat to flora and fauna. Efforts are therefore being made to reverse this trend but one problem is that we still lack detailed knowledge regarding the substrate requirements of many saproxylic species. In a field experiment, conducted in three forest types (forest reserve, mature managed forest and clear-cut), we evaluated the value, from a conservation perspective, of different substrate types (logs, snags and tops) of Norway Spruce, Picea abies, and if the quality of spruce logs as saproxylic habitats can be improved by simple log treatments (scorching and shading). We collected 9982 individuals representing 262 saproxylic beetle species in window traps. Both substrate type and, to a lesser extent, log treatment had a significant effect on the abundance and species richness of saproxylic beetles attracted to the different dead wood substrates. However, more importantly, the composition of the beetle assemblages differed significantly between both substrates and log treatments. Snags, logs and tops all attracted significantly different beetle assemblages and scorched logs differed from untreated control logs. Sixteen red listed species were trapped, with the highest number (11 species) being found on scorched logs. We found strong evidence that some species preferred a specific substrate type, mainly logs, in some cases treated logs (scorched or shaded), but not snags, the substrate commonly provided for conservation purposes on e.g. clear-cuts. This stresses the importance of conducting forestry in such a way that a multitude of both forest habitats and dead wood substrates are available continuously in the forest landscape to maintain biodiversity.  相似文献   

19.
Dead wood is a habitat for many insects and other small animals, some of which may be rare or endangered and in need of effective protection. In this paper, saproxylic beetle assemblages associated with different host trees in the subtropical forests in southwestern China were investigated. A total of 277 species (1 439 specimens) in 36 beetle families were collected from 117 dead wood samples, of which 101 samples were identified and respectively belonged to 12 tree genera. The number of saproxylic beetle species varied greatly among logs of different tree genera, with the highest diversity on logs of Juglans. Generally, broad‐leaved trees had a higher richness and abundance of saproxylic species than coniferous trees. Cluster analysis revealed that assemblages from broad‐leaved tree genera were generally similar (except for Betula) and assemblages from coniferous trees formed another distinct cluster. The subsequent indicator analysis proposed that there are different characteristic species for different cluster groups of host tree genera. In our study, log diameter has no positive influence on beetle species density. Conversely, comparisons of individual‐based rarefaction curves suggested that beetle species richness was highest in the small diameter class both in coniferous and broad‐leaved tree genera. With increased wood decay, proportion of habitat specialists (saproxylic beetles living on one tree genus) decreased, whereas proportion of habitat generalists (living on more than three tree genera) increased. The beetle species density was found to be higher in early stages, and decreased in later stages as well. A negative influence of altitude on saproxylic beetle species richness and abundance was detected. It was indicated that different tree genera and altitudes possibly display cross effects in modulating the altitudinal distribution and host preference of the beetles.  相似文献   

20.
Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号