首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物多倍体研究的回顾与展望   总被引:12,自引:0,他引:12  
多倍化是促进植物进化的重要力量。多倍体主要是通过未减数配子融合,体细胞染色体加倍以及多精受精三种方式起源的。其中,不减数配子是多倍体形成的主要机制。三倍体可能在四倍体的进化中起了重要作用。过去认为多倍体只能是进化的死胡同,现在发现很多多倍体类群都是多元起源的而不是单元起源的。当多倍体形成后,基因组中的重复基因大部分保持原有的功能,也有相当比例的基因发生基因沉默。多倍体通常表现出不存在于二倍体祖先的表型,并且超出了其祖先的分布范围,因为在多倍体中发生了很多基因表达的变化。主要从多倍体的起源、影响多倍体发生的因素及多倍体基因组的进化等方面回顾并展望多倍体的研究。  相似文献   

2.
刘勇波 《生物多样性》2021,29(8):1128-2903
基因组多倍化是物种形成和进化的重要驱动力, 几乎所有植物都经历过至少一次基因组加倍。然而, 由于多倍体植株比二倍体表现出更高的死亡率, 多倍化机制被认为是植物进化的“死胡同”。一些植物物种具有自然混合倍性种群, 即同一物种具有不同倍性, 这为揭示多倍体的进化机制提供了最佳途径。本文从基因组加倍形成多倍体植物开始, 综述了混合倍性种群的形成、建立与维持的研究进展, 探讨了多倍体适应自然环境的种群分化而形成多倍体物种的机制。研究自然混合倍性种群的倍性组成、重复基因的功能分化以及多倍体的生态位分化, 有利于明确混合倍性自然种群的生态适应与维持机理, 以及多倍体植物的进化机制。  相似文献   

3.
多倍化是植物物种形成与多样化的重要原动力。研究植物特别是一些重要经济作物和园艺植物多倍体的起源与进化,不仅对于揭示多倍体形成过程中性状变异的分子机制具有重要意义,而且可为植物遗传资源的保护与利用提供理论和技术支持。作为连接基因组序列片段到染色体组的桥梁,荧光原位杂交技术长期被广泛用来研究多倍体形成与进化过程中相关特异基因或序列的表达定位、外源染色体检测和鉴定、基因组结构变异等科学问题。因此,在简单介绍荧光原位杂交技术发展历史和植物多倍体主要类型的基础上,主要总结了荧光原位杂交技术在植物多倍体起源与进化相关研究上的应用。  相似文献   

4.
多倍体化在植物进化的历史过程中频繁发生,对新物种的形成产生了很大影响。伴随着多倍体化,植物在基因组和基因表达上发生了复杂的变化,包括染色体数目变化、染色体重组、基因沉默、基因的非加性表达和表观遗传等变化。该文对多倍体化引起的这些变化及其相应的机理进行了综述,以期为了解多倍体化中植物新表型的产生机理和在进化中的意义提供参考。  相似文献   

5.
多倍化(polyploidization)是指细胞核中的染色体组发生加倍并以可遗传的方式传递至后代的现象.虽然已有研究揭示多倍化事件普遍出现于被子植物各类群的进化过程中,但其对物种多样化与基因组进化的作用始终都处于争论之中.近年来随着基因组测序的革命性进步与多种组学和分子生物学技术的应用,植物多倍化与多倍体基因组进化领域的研究已取得多方面的重要进展.本文首先系统地介绍了植物多倍化的研究历史、多倍体分类系统以及该领域目前存在的主要学术争论.在此基础上,侧重从染色体数目与结构、DNA和组蛋白表观遗传修饰以及RNA和蛋白质表达等多个层次,对在多倍体小麦、油菜与棉花等模式作物中所取得的研究成果进行了较详细的概括.期望本文通过对最新研究成果的总结与未来研究展望,进一步增进对多倍化在植物物种多样性形成与基因组进化过程中重要作用的理解,促进我国植物多倍化研究领域的发展.  相似文献   

6.
多倍体植物的表观遗传现象   总被引:4,自引:0,他引:4  
杨俊宝  彭正松 《遗传》2005,27(2):335-342
表观遗传现象是指基因表达发生改变但不涉及DNA序列的变化, 它存在于许多植物的多倍体化过程中,而且能够在代与代之间传递。表观遗传变异包括基因沉默、DNA甲基化、核仁显性、休眠转座子激活和基因组印记等方面。这种现象可能是由于基因组间的相互作用直接诱发基因沉默或基因表达改变所致;也可能由DNA甲基化之外的组蛋白编码的改变引起;或者与甲基化不足、染色质重组或转座子激活等有关。表观遗传变异在提高基因表达的多样性,引起遗传学和细胞学上的二倍化,以及促进基因组间的相互协调等方面起着重要作用。文章综述了植物多倍体化过程中的表观遗传现象及其在多倍体植物基因组进化中的作用,并在此基础上提出了今后在这方面的研究途径。  相似文献   

7.
单性物种一般是多倍体,且通过单性生殖方式如雌核生殖、杂种生殖或孤雌生殖繁殖.与其他单性和多倍体物种相比,银鲫具有更高的倍性,为六倍体.它经历了几轮连续的基因组多倍化,还经历了一次额外的、在较近年代发生的基因组复制事件.更为重要的是,银鲫已被证实同时存在雌核生殖和有性生殖双重生殖方式.本文综述了银鲫的多倍化起源、克隆多样性和双重生殖方式的遗传基础,概述了其新品种培育和有关其生殖与早期发育相关基因鉴定的研究进展.已有实验证据表明,银鲫正处于二倍化的进化轨道中.作为一个新的进化发育(Evo-Devo)生物学模型,重点论述了银鲫在重复基因的功能歧化和单性动物的有性起源和进化等方面的研究前景.  相似文献   

8.
《遗传》2016,(3)
正自然界中存在大量的多倍化植物,在有花植物中,大约70%都是多倍体。而在现生脊椎动物中仅有部分鱼类、两栖类和爬行类中存在多倍体现象。为何多倍体脊椎动物数目远比多倍体植物较少至今仍是个谜。传统的解释有性别决定障碍、生理和发育限制(特别是细胞核-细胞质之间的相互作用和关联因素)、基因组休克或者剧烈的基因组重新构建等原因。杂交及多倍化会引发大量的遗传水平的基因组失衡现象,如非正常的四价染色体、剂量补偿失衡、高频率的DNA突变和重组,以及非孟德尔式遗  相似文献   

9.
多倍化(或全基因组加倍)是植物物种形成的重要途径,现存的被子植物可能都发生过一次甚至多次多倍化事件。多倍化传统的定义是染色体数目相对于祖先类群呈整倍性增加。其中最常用的研究方法是核型分析,核型能够提供物种的基本细胞学参数,包括染色体数目、倍性水平、核型不对称性、核型变异系数等。目前核型研究的趋势表现出从物种基本核型参数分析逐渐演化到多类群、多学科交叉融合的特点:一方面植物核型分析从种群、物种、科属的类群到生命之树,探讨染色体核型在各支系的进化特征、趋势以及驱动植物系统进化的细胞学机制;另一方面探讨和分析区域或生态系统植物区系的染色体谱或倍性等细胞学特征,可以探究区域地质环境变化或生态环境对染色体倍性等的影响,或通过区域染色体谱的构建,分析区域植物区系的形成和进化历史。因而,植物核型研究为系统发育、分子系统进化、生命之树以及植物区系地理的起源和演化研究提供了新思路。越来越多的新方法、新手段在植物核型分析与多倍化研究中得到运用,从而揭示了植物类群或植物区系的染色体进化以及细胞地理特征。今后植物细胞学研究趋势会向多学科交叉融合,整合各研究领域证据,从不同水平角度综合分析植物核型多样性形成的原因及意义,从而更加全面地认识和理解植物物种多样化与物种形成原因。  相似文献   

10.
多倍化(或全基因组加倍)是植物物种形成的重要途径,现存的被子植物可能都发生过一次甚至多次多倍化事件。多倍化传统的定义是染色体数目相对于祖先类群呈整倍性增加。其中最常用的研究方法是核型分析,核型能够提供物种的基本细胞学参数,包括染色体数目、倍性水平、核型不对称性、核型变异系数等。目前核型研究的趋势表现出从物种基本核型参数分析逐渐演化到多类群、多学科交叉融合的特点:一方面植物核型分析从种群、物种、科属的类群到生命之树,探讨染色体核型在各支系的进化特征、趋势以及驱动植物系统进化的细胞学机制;另一方面探讨和分析区域或生态系统植物区系的染色体谱或倍性等细胞学特征,可以探究区域地质环境变化或生态环境对染色体倍性等的影响,或通过区域染色体谱的构建,分析区域植物区系的形成和进化历史。因而,植物核型研究为系统发育、分子系统进化、生命之树以及植物区系地理的起源和演化研究提供了新思路。越来越多的新方法、新手段在植物核型分析与多倍化研究中得到运用,从而揭示了植物类群或植物区系的染色体进化以及细胞地理特征。今后植物细胞学研究趋势会向多学科交叉融合,整合各研究领域证据,从不同水平角度综合分析植物核型多样性形成的原因及意义,从而更加全面地认识和理解植物物种多样化与物种形成原因。  相似文献   

11.
Genome evolution in polyploids   总被引:71,自引:0,他引:71  
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.  相似文献   

12.
Polyploidy and genome evolution in plants   总被引:2,自引:0,他引:2  
Genome doubling (polyploidy) has been and continues to be a pervasive force in plant evolution. Modern plant genomes harbor evidence of multiple rounds of past polyploidization events, often followed by massive silencing and elimination of duplicated genes. Recent studies have refined our inferences of the number and timing of polyploidy events and the impact of these events on genome structure. Many polyploids experience extensive and rapid genomic alterations, some arising with the onset of polyploidy. Survivorship of duplicated genes are differential across gene classes, with some duplicate genes more prone to retention than others. Recent theory is now supported by evidence showing that genes that are retained in duplicate typically diversify in function or undergo subfunctionalization. Polyploidy has extensive effects on gene expression, with gene silencing accompanying polyploid formation and continuing over evolutionary time.  相似文献   

13.
多倍体植物中基因表达模式的变化   总被引:2,自引:0,他引:2  
植物杂交和多倍化能导致基因组结构发生变化,并显著影响了基因表达,因此认为杂交和多倍化是促进植物进化的一个重要力量。近些年大量的研究表明植物多倍化后基因表达模式发生了复杂的改变,包括基因沉默、基因表达的基因组偏向性及组织特异性、基因激活等现象,本文对这些现象及其特点和机制进行了综述。  相似文献   

14.
Polyploids are organisms with three or more complete chromosome sets. Polyploidization is widespread in plants and animals, and is an important mechanism of speciation. Genome sequencing and related molecular systematics and bioinformatics studies on plants and animals in recent years support the view that species have been shaped by whole genome duplication during evolution. The stability of polyploids depends on rapid genome recombination and changes in gene expression after formation. The formation of polyploids and subsequent diploidization are important aspects in long-term evolution. Polyploids can be formed in various ways. Among them, hybrid organisms formed by distant hybridization could produce unreduced gametes and thus generate offspring with doubled chromosomes, which is a fast, efficient method of polyploidization. The formation of fertile polyploids not only promoted the interflow of genetic materials among species and enriched the species diversity, but also laid the foundation for polyploidy breeding. The study of polyploids has both important theoretical significance and valuable applications. The production and application of polyploidy breeding have brought remarkable economic and social benefits.  相似文献   

15.
Investigators have long searched for a polyploidy paradigm—rules or principles that might be common following polyploidization (whole‐genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best‐known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10–20 yr to fill the gaps in our knowledge of well‐studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison—systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.  相似文献   

16.
The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin is seen as a likely factor underlying selective advantages related to life in extreme climates and/or colonization ability. A history of colonization in itself, as well as a recent origin, and possibly a limited number of polyploidization events would all predict less genetic diversity in polyploids than in diploids. The null hypothesis of higher gene diversity in polyploids has to date hardly been quantified and is here tested in self-incompatible Rorippa amphibia (Brassicaceae). The species occurs in diploid and tetraploid forms and displays clear geographical polyploidy in Europe. On the basis of eight microsatellite loci it can be concluded that the level of gene diversity is higher in tetraploids than in diploids, to an extent that is expected under neutral evolution when taking into account the larger effective population size in the doubled cytotype. There is thus no evidence for reduced genetic diversity in the tetraploids. The evidence presented here may mean that the tetraploids' origin is not recent, has not been affected by bottlenecks and/or that tetraploids were formed multiple times while an effect of introgression may also play a role.  相似文献   

17.
Polyploidization influences the genetic composition and gene expression of an organism. This multi-level genetic change allows the formation of new regulatory pathways leading to increased adaptability. Although both forms of polyploidization provide advantages, autopolyploids were long thought to have little impact on plant divergence compared to allopolyploids due to their formation through genome duplication only, rather than in combination with hybridization. Recent advances have begun to clarify the molecular regulatory mechanisms such as microRNAs, alternative splicing, RNA-binding proteins, histone modifications, chromatin remodelling, DNA methylation, and N6-methyladenosine (m6A) RNA methylation underlying the evolutionary success of polyploids. Such research is expanding our understanding of the evolutionary adaptability of polyploids and the regulatory pathways that allow adaptive plasticity in a variety of plant species. Herein we review the roles of individual molecular regulatory mechanisms and their potential synergistic pathways underlying plant evolution and adaptation. Notably, increasing interest in m6A methylation has provided a new component in potential mechanistic coordination that is still predominantly unexplored. Future research should attempt to identify and functionally characterize the evolutionary impact of both individual and synergistic pathways in polyploid plant species.  相似文献   

18.
BACKGROUND: In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids. METHODS: Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200,000 years to approx. 4.5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes. KEY RESULTS AND CONCLUSIONS: By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4.5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed.  相似文献   

19.
The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.  相似文献   

20.
A polyploid organism by possessing more than two sets of chromosomes from one species (autopolyploidy) or two or more species (allopolyploidy) is known to have evolutionary advantages. However, by what means a polyploid accommodates increased genetic dosage or divergent genomes (allopolyploidy) in one cell nucleus and cytoplasm constitutes an enormous challenge. Recent years have witnessed efforts and progress in exploring the possible mechanisms by which these seemingly intangible hurdles of polyploidy may be ameliorated or eventually overcome. In particular, the documentation of rapid and extensive non-Mendelian genetic and epigenetic changes that often accompany nascent polyploidy is revealing: the resulting non-additive and novel gene expression at global, regional and local levels, and timely restoration of meiotic chromosomal behavior towards bivalent pairing and disomic inheritance may ensure rapid establishment and stabilization as well as its long-term evolutionary success. Further elucidation on these novel mechanisms underpinning polyploidy will promote our understanding on fundamental issues in evolutionary biology and in our manipulation capacities in future genetic improvement of important crops that are currently polyploids in genomic constitution. This review is intended to provide an updated discussion on these interesting and important issues within the scope of a specific yet one of the most important plant groups--polyploid wheat and its related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号