首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Positive interactions among native plant species are common in alpine habitats, particularly those where one species (nurse plant) generates microclimatic conditions that are more benign than the surrounding environment, facilitating the establishment of other species. Nonetheless, these microclimatic conditions could facilitate the establishment of non-native species as well. A conspicuous component of the alien alpine flora of the central Chilean Andes is the perennial herb Taraxacum officinale agg. (dandelion). In contrast to other alien species that are restricted to human-disturbed sites, T. officinale is frequently observed growing within native plant communities dominated by cushion plants. In this study we evaluated if T. officinale is positively associated with the cushion plant Azorella monantha. Via seedling survival experiments and gas-exchange measurements we also assessed the patterns of facilitation between cushions and dandelions, and explore the potential mechanisms of invasion by dandelions. T. officinale grows spatially positively associated with cushions of A. monantha. Survival of seedlings, as well as their net-photosynthetic rates and stomatal conductance, were higher within cushions than in open areas away from them, suggesting that the microclimatic modifications generated by this native cushion facilitates the establishment and performance of a non-native invasive species. Our results, as well as other recent studies, highlight the role of native communities in facilitating rather than constraining non-native plant invasions, particularly in stressful habitats such as alpine environments.  相似文献   

2.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

3.
Phenotypic plasticity has long been suggested to facilitate biological invasions in changing environments, allowing a species to maintain a good ecophysiological performance. High-mountain habitats have been particularly useful for evaluation of the relative importance of environmental conditions in the colonization and invasion process, because they have heterogeneous and stressful climatic conditions, inducing photoinhibition. Light intensity is one of the most changing conditions along altitudinal gradients, showing more variability in higher altitudes. In this study, we analyzed the plasticity in photoprotective strategies and performance of the invasive Taraxacum officinale. Additionally, we tested whether higher plasticity enhances competitive ability in an alpine environment We conducted an experiment to evaluate plasticity with a second generation (F2) of T. officinale individuals from 1,600 to 3,600 m, in a greenhouse with variation in light intensity. Treatments consisted of transferring 120 individuals from each altitude to two conditions of light intensity. We then recorded concentrations of photoprotection pigment, de-epoxidation state of the xanthophyll cycle, foliar angles, photochemical efficiency by fluorescence of photosystem II, total dry biomass and flower production. Additionally, we compared plasticity in both photoprotective and performance traits between T. officinale and the co-occurring native species Hypochaeris thrincioides. Finally, we performed a manipulative experiment under two light regimes in order to assess the competitive outcome between the invasive T. officinale and the native H. thrincioides. Individuals from higher altitude showed significantly greater plasticity than individuals from lower altitude. Similarly, individuals under high light intensity showed higher levels of photoprotective pigments, biomass and flower production. On the other hand, the invasive plant species showed significantly greater plasticity than the co-occurring native species, and a strong negative impact on the biomass of the native plant. Phenotypic plasticity seems to be a successful strategy in T. officinale to compete with native species and may be positively associated with the success of invasions, being greater in individuals from more heterogeneous and stressful environments.  相似文献   

4.
We compared water relations and adaptations to drought stress in native and invasive exotic dandelions, Taraxacum ceratophorum and T. officinale. Photosynthesis (A), transpiration (E), and water use efficiency (WUE; carbon gained/water lost) were measured for the two species under extreme drought in the alpine tundra of Colorado, USA. We also subjected both species and F(1) hybrids to a dry-down experiment to determine how relative physiological performance varied with water availability. Photosynthesis and transpiration in the field were low and did not differ between Taraxacum congeners; however, native T. ceratophorum had higher WUE than T. officinale. After 6 days of greenhouse drought, photosynthesis and transpiration were reduced in T. officinale compared to T. ceratophorum. Taraxacum ceratophorum maintained high WUE under control and drought treatments. Conversely, WUE in T. officinale was highly plastic between watered (low WUE) and dry-down (high WUE) treatments. Hybrids did not exhibit heterosis; instead, they were similar to T. officinale in A and E and intermediate to the parental species in WUE. Overall, results suggest that native dandelions are more drought tolerant than invasive congeners or their hybrids, but have less plasticity in WUE. Arid habitats and occasional drought in mesic sites may provide native dandelions with refugia from negative interactions with invasives.  相似文献   

5.
Several hypotheses have been proposed to explain the defense strategies of invasive plants in new ranges. In the absence of specialist herbivores, it is believed that invasive plants may allocate fewer resources to resistance and more to growth and reproduction, thus increasing tolerance to damage in the invasive genotypes. In order to test these predictions, we compared both performance (growth and reproduction) and defense strategies (tolerance and resistance) of two populations of Taraxacum officinale, one from the native range in the French Alps, and one from the introduced range in the Chilean Andes. Individuals from the introduced population demonstrated improved reproductive traits relative to those from the native population, although there was no discernible difference in biomass accumulation. Additionally, reduced tolerance was evident in the case of the former; whereas fitness traits of native plants were unaffected by damage, invasive plants reduced growth and seed output by 25 and 30% respectively following damage treatments. Increases in levels of phenols and anthocyanins, produced as a defense response to herbivory, were observed in introduced plants. Our results suggest that reallocation of resources to reproduction may be an important factor favouring invasive success of T. officinale in Chile, and that a higher investment in chemical resistance traits in this population may also be a factor in this regard.  相似文献   

6.
The impact of invasive alien species on native species is of increasing global concern. Invasive plants have various negative effects on natives through competition; however, relatively little is known about competition for pollination. The relationship between Japanese native dandelions (Taraxacum spp.) and invasive congeners may be a typical case of such an interaction. For example, native dandelions are being replaced by invasive congeners, especially in urban and suburban areas of Japan. To explain this phenomenon, we hypothesized that when natives are mixed with attractive invasives, natives may suffer from reduced seed set because invasives deprive natives of pollinators or because pollinators frequently move between species, resulting in interspecific pollen transfer. To test this hypothesis, we studied the effect of the invasive dandelion T. officinale on the pollination and seed set of the native T. japonicum using artificial arrays of monospecific and mixed-species plots as well as natural populations. Taraxacum officinale attracted more pollinator visits, perhaps because it produced more nectar than T. japonicum. The number of pollinator visits to T. japonicum was reduced when the congeners were grown together, and pollinators moved frequently between the two species. The proportion of seed set for T. japonicum was reduced in the presence of T. officinale in both artificial arrays and natural populations. These results support our hypothesis that interspecific competition for pollination plays an important role in the recent replacement of native dandelions by invasive congeners in Japan. Because invasive dandelions are apomicts, negative effects are incurred only by sexual natives. Thus, this system can be recognized as a rare case of interspecific interaction through pollination.  相似文献   

7.
The tropical Andes represent one of the world's biodiversity hot spots, but the evolutionary drivers generating their striking species diversity still remain poorly understood. In the treeless high‐elevation Andean environments, Pleistocene glacial oscillations and niche differentiation are frequently hypothesized diversification mechanisms; however, sufficiently densely sampled population genetic data supporting this are still lacking. Here, we reconstruct the evolutionary history of Loricaria (Asteraceae), a plant genus endemic to the Andean treeless alpine zone, based on comprehensive population‐level sampling of 289 individuals from 67 populations across the entire distribution ranges of its northern Andean species. Partly incongruent AFLP and plastid DNA markers reveal that the distinct genetic structure was shaped by a complex interplay of biogeography (spread along and across the cordilleras), history (Pleistocene glacial oscillations) and local ecological conditions. While plastid variation documents an early split or colonization of the northern Andes by at least two lineages, one of which further diversified, a major split in the AFLP data correlate with altitudinal ecological differentiation. This suggests that niche shifts may be important drivers of Andean diversification not only in forest–alpine transitions, but also within the treeless alpine zone itself. The patterns of genetic differentiation at the intraspecific level reject the hypothesized separation in spatially isolated cordilleras and instead suggest extensive gene flow among populations from distinct mountain chains. Our study highlights that leveraging highly variable markers against extensive population‐level sampling is a promising approach to address mechanisms of rapid species diversifications.  相似文献   

8.
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection’s ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype–environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype–environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision.  相似文献   

9.
Ecological theory predicts a positive association between environmental heterogeneity of a given habitat and the magnitude of phenotypic plasticity exhibited by resident plant populations. Taraxacum officinale (dandelion) is a perennial herb from Europe that has spread worldwide and can be found growing in a wide variety of habitats. We tested whether T. officinale plants from a heterogeneous environment in terms of water availability show greater phenotypic plasticity and better performance in response to experimental water shortage than plants from a less variable environment. This was tested at both low and moderate temperatures in plants from two sites (Corvallis, Oregon, USA, and El Blanco, Balmaceda, Chile) that differ in their pattern of monthly variation in rainfall during the growth season. We compared chlorophyll fluorescence (photosynthetic performance), flowering time, seed output, and total biomass. Plants subjected to drought showed delayed flowering and lower photosynthetic performance. Plants from USA, where rainfall variation during the growth season was greater, exhibited greater plasticity to water shortage in photosynthetic performance and flowering time than plants from Chile. This was true at both low and moderate temperatures, which were similar to early- and late-season conditions, respectively. However, phenotypic plasticity to decreased water availability was seemingly maladaptive because under both experimental temperatures USA plants consistently performed worse than Chile plants in the low water environment, showing lower total biomass and fewer seeds per flower head. We discuss the reliability of environmental clues for plasticity to be adaptive. Further research in the study species should include other plant traits involved in functional responses to drought or potentially associated with invasiveness.  相似文献   

10.
Agamospermous dandelions of hybrid origin between a native sexual diploid species (Taraxacum platycarpum Dahlst. or T. japonicum Koidz.) and an alien agamospermous triploid [T. officinale Weber and T. laevigatum (Willd.) DC.] are now widely distributed throughout mainland Japan. These hybrid dandelions are known to be genetically variable. We hypothesized that this variability is maintained by repeated ongoing hybridization, based on the fact that triploid dandelions not only produce seeds agamospermously, but also produce some functional pollen grains that are able to sire seeds of sexual dandelions. To test this hypothesis, we examined whether heads of Japanese diploid dandelions produce new hybrid seeds after fertilization by pollen from triploid agamosperms under field conditions. One of the 430 tested plants grown from sexual dandelion seeds had morphological and molecular characteristics, which are consistent with a hybrid origin. The plant formed a hybrid surrounded by many individuals having recurved involucral bracts, in which frequency of T. officinale was very low (3.5 %). Cytological data and bagging experiments demonstrate triploidy and asexual seed production of the hybrid. Taken together, these results supported that the new hybrid is probably derived from a backcross of a hybrid to the native sexual species. Our findings provide evidence for the evolution of a new agamosperm through interspecific hybridization as a contemporary population process.  相似文献   

11.
We report the development of seven microsatellite markers in the high Andean Asteraceae Chaetanthera pusilla. An enrichment protocol was used to isolate microsatellite loci, and polymorphism was explored with samples from two natural populations collected in the high Andes at La Parva and Valle Nevado (Chile). We found a high level of polymorphism, heterozygote deficiency and strong differentiation among populations. Four of the seven loci successfully cross‐amplified in other Chaetanthera species.  相似文献   

12.
Several factors have been identified as relevant in determining the abundance of non-native invasive species. Nevertheless, the relative importance of these factors will vary depending on the invaded habitat and the characteristics of the invasive species. Due to their harsh environmental conditions and remoteness, high-alpine habitats are often considered to be at low risk of plant invasion. However, an increasing number of reports have shown the presence and spread of non-native plant species in alpine habitats; thus, it is important to study which factors control the invasion process in these harsh habitats. In this study, we assessed the role of disturbance, soil characteristics, biotic resistance and seed rain in the establishment and abundance of the non-native invasive species Taraxacum officinale (dandelion) in the Andes of central Chile. By focusing on human-disturbed patches, naturally disturbed patches, and undisturbed patches, we did not find that disturbance per se, or its origin, affected the establishment and abundance of T. officinale. The abundance of this non-native invasive species was not negatively related to the diversity of native species at local scales, indicating no biotic resistance to invasion; instead, some positive relationships were found. Our results indicate that propagule pressure (assessed by the seed rain) and the abiotic soil characteristics are the main factors related to the abundance of this non-native invasive species. Hence, in contrast to what has been found for more benign habitats, disturbance and biotic resistance have little influence on the invasibility of T. officinale in this high-alpine habitat.  相似文献   

13.
Aim We evaluated the phylogeography of sigmodontine taxa of the genera Phyllotis and Abrothrix at the intra and interspecific level, in the Atacama desert and adjacent Andean and Puna regions of northern Chile. The major goal was to test the hypothesis that sigmodontine mice differentiated in the lowlands, most likely via peripatric speciation, dispersing from highland to lowland areas across the desert vegetated canyons, thus reaching the Pacific coast. Dispersing individuals may have found favourable habitats along these valleys, in northern Chile, which connect the high altitude Puna region with the lowlands. Location The study was conducted in northern Chile (18–22° S), in coastal pre‐Puna and Puna regions. Methods For phylogeographic analyses we analysed cytochrome b mitochondrial sequences for 29 specimens of the genera Abrothrix and Phyllotis, from the region of study. All results were analysed phylogenetically using maximum‐likelihood, Bayesian, and uncorrected median‐joining network methodology. Results In Phyllotis we recognized two major clusters of taxa: one restricted to the Puna region identified as Phyllotis xanthopygus chilensis, in close association to a pre‐Punean and lowland clade constituted by Phyllotis limatus, on the western slopes of the Andes. A similar pattern was distinguished for Abrothrix, where Abrothrix andinus was recognized in the Andean Altiplano‐pre‐Puna region and Abrothrix olivaceus in the lowlands of northern Chile. Main conclusions We found that the radiation of sigmodontine mice in the central Andes may have been facilitated by the historical events that affected high Andean elevations during Pleistocene times, as well as changes in the vegetation composition and climate that started to prevail during that time. Our results also support previous hypotheses that the major mode of evolution for small mammals in the Andes region has been based on the founder effect or the peripheral isolates model, from a central range located in the Andes.  相似文献   

14.
Andean Condors (Vultur gryphus) are a Near Threatened species that was formerly distributed along the entire length of the Andes from western Venezuela to Tierra del Fuego. Populations have been severely reduced north of Peru, but several thousand Andean Condors still exist in the southern portion of their range in Argentina and Chile. Little is known, however, about the size of the Andean Condor population in the central part of their range in Peru and Bolivia. From June to September 2012, we used feeding stations to attract Andean Condors and estimate the size and structure of the population in the eastern Andes of central and southern Bolivia. We estimated a minimum population of 253 condors, an adult male‐to‐female ratio of 1:0.6, an immature male‐to‐female ratio of 1:0.9, and an adult‐to‐immature ratio of 1:1.1. At our five survey areas, estimated abundance ranged from 15 to 100 condors per area. Males outnumbered females in three areas and the opposite was true in two areas. Our estimated adult‐to‐immature ratio, overall and in each area, suggests that the populations could be reproducing at a high rate. As previously observed in other Andean Condor populations, skewed sex ratios could be associated with differences between sexes and age classes in habitat selection. Although our results suggest that Bolivian populations of Andean Condors are still reasonably large, population monitoring is urgently needed, including use of feeding stations throughout the entire Bolivian range of the species and intensive searches for roosting and nesting sites.  相似文献   

15.
16.
Positive interactions between cushion plant and associated plants species in the high Andes of central Chile should also include the effects of fungal root symbionts. We hypothesized that higher colonization by arbuscular mycorrhizal (AM) fungi exists in cushion-associated (nursling) plants compared with conspecific individuals growing on bare ground. We assessed the AM status of Andean plants at two sites at different altitudes (3,200 and 3,600 m a.s.l.) in 23 species, particularly in cushions of Azorella madreporica and five associated plants; additionally, AM fungal spores were retrieved from soil outside and beneath cushions. 18 of the 23 examined plant species presented diagnostic structures of arbuscular mycorrhiza; most of them were also colonized by dark-septate endophytes. Mycorrhization of A. madreporica cushions showed differences between both sites (68% and 32%, respectively). In the native species Hordeum comosum, Nastanthus agglomeratus, and Phacelia secunda associated to A. madreporica, mycorrhization was six times higher than in the same species growing dispersed on bare ground at 3,600 m a.s.l., but mycorrhiza development was less cushion dependent in the alien plants Cerastium arvense and Taraxacum officinale at both sites. The ratio of AM fungal spores beneath versus outside cushions was also 6:1. The common and abundant presence of AM in cushion communities at high altitudes emphasizes the importance of the fungal root symbionts in such situations where plant species benefit from the microclimatic conditions generated by the cushion and also from well-developed mycorrhizal networks.  相似文献   

17.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

18.
Summary Prosopis tamarugo, a tree native to the Atacama desert of Chile apparently has unique water relations. It is proposed that in its native habitat, where there is essentially no precipitation, establishment occurs during the rare flooding periods, with water coming as runoff from the Andes. These plants subsequently exist as phreatophytes tapping the relatively shallow ground water. Although phreatophytic, the plants appears to come under increasing drought stress as the growing season progresses. Because of the very low water potentials of the salty surface soils, water evidently moves from the plant into the soil under certain conditions. This water may be reabsorbed subsequently and used by the plant as the water table capillary fringe is depleted toward the end of the leafy period.  相似文献   

19.
In conservation biology, increasing numbers of studies have focused on reproductive interference (RI) between a native species and related aliens. However, few studies have examined the frequency dependence of RI, despite of its key importance to invasiveness. Here, we report for the first time frequency-dependent RI in a pair of native and alien dandelions: Taraxacum japonicum and T. officinale, respectively. Taraxacum japonicum has been displaced rapidly by the alien congener T. officinale in Japan and its causal mechanism are still poorly understood. Field observations revealed that the seed-set of natives decreased substantially as the proportion of alien neighbors increased. Subsequently, in a field experiment, the removal of alien flowers only greatly increased the seed-set of natives. We synthesized these results with existing theoretical models of RI and concluded that RI, which is mediated by strong frequency dependence, is presumably responsible for the displacement of T. japonicum by T. officinale.  相似文献   

20.
Aim Colliguaja odorifera Mol., a Euphorbiaceous shrub of central Chile, inhabits the matorral formation, growing at low altitudes on both Andean and coastal mountain range slopes. In the recent geological past, this region was subjected to climatic changes and geological disturbances that most probably caused population shrinkages on the Andean mountain slopes. This study tested the hypothesis that under such a scenario, existing populations should show lower genetic diversity in the Andean than in the coastal areas; these coastal populations being the potential source populations for recolonization. Location The study was carried out in central Chile by comparing the genetic diversity between the Andean and coastal areas, each represented by five localities distributed from 32°30′ S to 34° S. Methods Genetic diversity was estimated by DNA analysis using 18 dominant multilocus Random Amplified Polymorphic DNA (RAPD) loci, characterizing 73 genetic phenotypes. Results The comparison of the two matorral areas showed that Andean populations of C. odorifera have a subset of the genetic diversity found in the coastal populations. Andean populations also show a consistently lower genetic diversity, lower genetic distances and higher genetic structure, coincident with expectations based on the Pleisto‐Holocenic perturbation regime. Main conclusions This first genetic analysis for South American mediterranean populations confirms the findings of previous floristic and palynological studies that identified refuge zones in the coastal mountain range of central Chile, a situation analogous with that occurring during periods of inter‐glacial northward migration in Southern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号