首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Abstract. In this field study we analysed the regional and local scale effects of disturbance and climate on altitudinal treelines dominated by Nothofagus pumilio in northern Patagonia. We compared two regions west and east of the Andes at 40° S, slopes with warm vs cool aspects and undisturbed vs locally disturbed treelines. This spatial framework allowed us to test (1) for differences among treelines affected by different types of local disturbance and (2) the traditional hypothesis that low temperature limits treeline. Contingency tables and ANOVA showed that local disturbance occurred more frequently than expected on slopes with cool aspects, steep slope angles and concave slope configuration. Disturbed treelines were locally lowered with longer ecotones and lower krummholz growth rates and vegetation cover than undisturbed treelines. Three‐way ANOVA showed the significant influences of study area (regional climate) and aspect (local climate) on treeline elevation, krummholz growth rates and density, tree density and vegetation cover, while accounting for local disturbance. Treeline elevations were higher east of the Andes reflecting the more continental climate in Argentina than in Chile, plus regional impacts of volcanic eruptions. Tree density and vegetation cover were greater west of the Andes reflecting greater precipitation in Chile. Within study areas, local climate had different influences on treeline elevations and krummholz growth rates west and east of the Andes. We predict that increased tree growth and upslope advance of treeline in response to global warming is more likely in Chile than in Argentina near 40° S, unless precipitation increases east of the Andes. To test these predictions, we recommend research be stratified to account for the influences of local disturbance, which may confound climatic impacts. In northern Patagonia, suitable control (undisturbed) study sites will most likely be found at upper slope positions with low slope angles, simple microtopography and straight topographic configuration.  相似文献   

2.
Systematic investigations of the upper forest line (UFL) primarily concentrate on mid and high latitudes of the Northern Hemisphere, whereas studies of Neotropical UFLs are still fragmentary. This article outlines the extraordinary high tree diversity at the UFL within the Andean Depression and unravels the links between the comparatively low position of the local UFL, high tree‐species diversity, and climate. On the basis of Gentry′s rapid inventory methodology for the tropics, vegetation sampling was conducted at 12 UFL sites, and local climate (temperature, wind, precipitation, and soil moisture) was investigated at six sites. Monotypic forests dominated by Polylepis were only found at the higher located margins of the Andean Depression while the lower situated core areas were characterized by a species‐rich forest, which lacked the elsewhere dominant tree‐species Polylepis. In total, a remarkably high tree‐species number of 255 tree species of 40 different plant families was found. Beta‐diversity was also high with more than two complete species turnovers. A non‐linear relationship between the floristic similarity of the investigated study sites and elevation was detected. Temperatures at the investigated study sites clearly exceeded 5.5°C, the postulated threshold value for the upper tree growth limit in the tropics. Instead, quasi‐permanent trade winds, high precipitation amounts, and high soil water contents affect the local position of the UFL in a negative way. Interestingly, most of the above‐mentioned factors are also contributing to the high species richness. The result is a combination of a clearly marked upper forest line depression combined with an extraordinary forest line complexity, which was an almost unknown paradox.  相似文献   

3.
The structure and composition of forest ecosystems are expected to shift with climate‐induced changes in precipitation, temperature, fire, carbon mitigation strategies, and biological disturbance. These factors are likely to have biodiversity implications. However, climate‐driven forest ecosystem models used to predict changes to forest structure and composition are not coupled to models used to predict changes to biodiversity. We proposed integrating woodpecker response (biodiversity indicator) with forest ecosystem models. Woodpeckers are a good indicator species of forest ecosystem dynamics, because they are ecologically constrained by landscape‐scale forest components, such as composition, structure, disturbance regimes, and management activities. In addition, they are correlated with forest avifauna community diversity. In this study, we explore integrating woodpecker and forest ecosystem climate models. We review climate–woodpecker models and compare the predicted responses to observed climate‐induced changes. We identify inconsistencies between observed and predicted responses, explore the modeling causes, and identify the models pertinent to integration that address the inconsistencies. We found that predictions in the short term are not in agreement with observed trends for 7 of 15 evaluated species. Because niche constraints associated with woodpeckers are a result of complex interactions between climate, vegetation, and disturbance, we hypothesize that the lack of adequate representation of these processes in the current broad‐scale climate–woodpecker models results in model–data mismatch. As a first step toward improvement, we suggest a conceptual model of climate–woodpecker–forest modeling for integration. The integration model provides climate‐driven forest ecosystem modeling with a measure of biodiversity while retaining the feedback between climate and vegetation in woodpecker climate change modeling.  相似文献   

4.
Aim Species richness depends on climate and land use. Maintaining locations with favourable climate and land‐use patterns is critical for protecting biodiversity because the loss of either can reduce the species richness that an area supports. Currently, the Guiana Shield (GS) receives abundant precipitation and has relatively light land use. For species richness this constitutes a good–good combination of climate and land use, respectively. In contrast, much of eastern Brazil receives low levels of precipitation and has heavy land use, which is a bad–bad combination for species richness. Thus, the current distribution of precipitation and land use in northern South America is relatively favourable for biodiversity. Palaeoclimate and model studies suggest, however, that the precipitation patterns for the two regions have switched before and could switch in response to greenhouse gas emissions. This paper examines the potential consequences of reconfiguring climate with respect to existing land‐use patterns using South America as an example. Location South America north of 20° S and east of the Andes. Methods Ecosystem structure and function are modelled under (1) historical climate and (2) altered precipitation following a shift in the location of the Inter‐Tropical Convergence Zone (ITCZ). The distribution of precipitation, biomes, net primary productivity (NPP) and land use are then used to predict levels of species richness under the two climate scenarios. Results Climate changes could shift the distribution of vegetation and NPP such that conditions favourable for species richness in the GS region disappear. If land‐use patterns were not prohibitive in eastern Brazil, the improved climate conditions there could compensate for the GS loss (assuming migratory barriers are overcome). Instead, existing land‐use patterns cause the combined species richness projected for the two regions to plummet. Main conclusions Human activities will alter current configurations of land use and climate throughout the world. For species richness, new configurations are likely to include both positive and negative combinations of climate and land use. However, the irreversibility of past extinctions due to land‐use patterns loads the dice against species richness.  相似文献   

5.
近40年来辽宁地区气候干湿界线年代际波动及其成因   总被引:14,自引:2,他引:12  
孙凤华  袁健 《应用生态学报》2006,17(7):1274-1279
应用1961~2004年辽宁省内52个气象站的温度、降水、湿度、风和日照等气候资料,采用改进的Penman模型计算了辽宁地区近40年的潜在蒸发量,讨论了其时空代表性及分布特征;以干燥度指数为干湿气候区的划分标准,通过对该地区近40年干湿气候界线波动状况的对比,在10年际尺度上详细分析了其干湿气候界线波动及变化规律.结果表明,20世纪60年代以来,辽宁省干湿气候界线波动显著,呈现出整体移动的特征,但半湿润与湿润、半干旱与半湿润两条界线并未表现出同进、同退的年际变化特征.20世纪90年代辽宁省干湿气候存在一次突变,半湿润与湿润界限明显东移,半干旱与半湿润界线明显西移,半干旱和湿润区面积都显著缩小,半湿润区面积显著扩大.辽宁西部的气候干湿状况主要由西太平洋副热带高压和东南季风控制,辽宁东部的气候干湿状况除受西太平洋副热带高压和东南季风的影响外,还应考虑到地形降水的作用.  相似文献   

6.
The results of numerical modelling of large-scale circulation in Lakes Onega and Ladoga are presented, with primary emphasis on the temporal variability of currents with time scales of days. Some typical circulation patterns have been inferred from model calculations. They reflect the existence of different dynamic regimes in the lakes, namely, forced and free circulation regimes. The forced circulation regime is the well-known wind-induced double-gyre circulation accompanied by coastal upwelling and downwelling. A case of double-gyre circulation in Lake Onega was investigated in particular detail. The second dynamic regime is a free response (or a relaxation) of the stratified lake to wind cessation, and is connected closely with the evolution of wind-induced upwelling and thermal front propagation. Diagnostic calculations demonstrate that the regime of relaxation supports the restoration of cyclonic circulation in Lake Onega. Barotropic circulation patterns in Lake Ladoga were calculated with the emphasis on prevailing winds from west to south-east. Our calculations show that the bottom relief of Lake Ladoga causes asymmetry in the double-gyre circulation patterns. In particular, approximately equal cyclonic and anticyclonic circulation cells appearing in the case of southerly wind transform to a single dominant cyclonic cell and several small anticyclonic cells in the case of westerly wind. We also found especially strong sensitivity of the sense of rotation of the largest gyre to the east-west components of the wind vector.  相似文献   

7.
Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.  相似文献   

8.
Aim Topography is a fundamental geophysical observable that contains valuable information about the geodynamic, tectonic and climatic history of a region. Here, we extend the traditional uses of topographic analysis to evaluate the role played by topography in the distribution of regional‐scale biodiversity in the south‐western USA. An important aspect of our study is its ability to provide a way to quantify characteristics of the topographic fabric and to construct predictive models that can be used to test hypotheses that relate topography and biodiversity. Location South‐western USA region of the North American Cordillera. Methods Our approach begins with a quantitative analysis of the topography and the construction of a predicted biodiversity map based on measurable topographic quantities: organization, roughness, slope aspect, grain orientation and mean elevation. We then make a quantitative comparison between the predicted and observed biodiversity, based on the assumption that land‐cover diversity is a plausible measure of regional‐scale biodiversity. Land‐cover information used for this study was collected as part of the U.S.G.S. global land cover characteristics (GLCC) project and is derived from satellite (AVHRR) imagery. Results To a first order, the predicted regional‐scale biodiversity based on our topographic model shows a good correlation with the observed biodiversity (as estimated from the land‐cover diversity). Our model overestimates the biodiversity in many parts of the Colorado Plateau, Rio Grande Rift, and the low desert regions of the Southern Basin and Range, suggesting that in these provinces a biodiversity estimate based solely on topography is an over‐simplification. However, much of the Madrean Archipelago and Sierra Madre provinces, which are centres of high biodiversity in this region, show excellent agreement between the observed and predicted biodiversity. Main conclusions While we acknowledge that many other factors in addition to topography have an important influence on biodiversity (particularly on a local scale), we conclude that topography plays a primary role in the regional to continental‐scale biodiversity, particularly in regions characterized by insular mountain fabrics.  相似文献   

9.
Montane tropical cloud forests, with their complex topography, biodiversity, high numbers of endemic species, and rapid rates of clearing, are a top global conservation priority. However, species distributions at local and landscape scales in cloud forests are still poorly understood, in part because few regions have been surveyed. Empirical work has focused on species distributions along elevation gradients, but spatial variation among forests at the same elevation is less commonly investigated. In this study, the first to compare tree communities across multiple Andean cloud forests at similar elevations, we surveyed trees in five ridge‐top forest reserves at the upper end of the ‘mid‐elevation diversity bulge’ (1900–2250 masl) in the Intag Valley, a heavily deforested region in the Ecuadorian Andes. We found that tree communities were distinct in reserves located as close as 10 to 35 km apart, and that spatially closer forests were not more similar to one another. Although larger (1500 to 6880 ha), more intact forests contained significantly more tree species (108–120 species/0.1 ha) than smaller (30 to 780 ha) ones (56–87 species/0.1 ha), each reserve had unique combinations of more common species, and contained high proportions of species not found in the others. Results thus suggest that protecting multiple cloud forest patches within this narrow elevational band is essential to conserve landscape‐level tree diversity, and that even small forest reserves contribute significantly to biodiversity conservation. These findings can be applied to create management plans to conserve and restore cloud forests in the Andes and tropical montane cloud forests elsewhere.  相似文献   

10.
Aim This paper presents a basic analysis of the macro- and mesoclimate of the Brazilian campos de altitude, a series of cool–humid, mountaintop grasslands in southeastern Brazil, and compares results with data from other tropical as well as temperate alpine sites. Location Beginning at altitudes of 1800–2000 m, the campos de altitude are found atop the highest summits of the main ranges of the southeastern Brazilian Highlands, between the states of Santa Catarina and Minas Gerais/Espírito Santo. Methods Macro- and mesoclimatic parameters for the campos de altitude are derived from both original data and previously reported results. Parameters include approximate radiation budgets, temperature lapse rates, seasonal and diurnal patterns in temperature, occurrence of frost, elevational gradients in precipitation, and interannual and seasonal patterns in precipitation. Using multivariate techniques and simple numerical contrasts, the climate of the campos de altitude is compared to climates of other tropical as well as temperate alpine sites. Results With respect to patterns of seasonality and the marked influence of polar frontal activity, the macroclimate of the campos de altitude is typically tropical-marginal. However, in reference to actual temperature and precipitation values, the length and profundity of the dry season, average humidities and cloudiness, the climate of the campus de altitude more closely corresponds to that of more inner-tropical systems. These commonalities are best developed with respect to páramo climates of the northern Andes and, especially, Costa Rica. Main conclusions Their very different latitudinal and geographic positions notwith- standing, the campos de altitude and high mountain formations of the N. Andean and Central American Cordillera show clear macroclimatic congruities. In these congruities reside both the environmental basis for strong Andean–southeast Brazilian biogeographic connections, and the context within which evolutionary and ecological parallelisms have developed in the biota of these two widely separate neotropical mountain systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号