首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boyd JM  Pierik AJ  Netz DJ  Lill R  Downs DM 《Biochemistry》2008,47(31):8195-8202
The metabolism of iron-sulfur ([Fe-S]) clusters requires a complex set of machinery that is still being defined. Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. ApbC is a 40.8 kDa homodimeric ATPase and as purified contains little iron and no acid-labile sulfide. An [Fe-S] cluster was reconstituted on ApbC, generating a protein that bound 2 mol of Fe and 2 mol of S (2-) per ApbC monomer and had a UV-visible absorption spectrum similar to known [4Fe-4S] cluster proteins. Holo-ApbC could rapidly and effectively activate Saccharomyces cerevisiae apo-isopropylmalate isolomerase (Leu1) in vitro, a process known to require the transfer of a [4Fe-4S] cluster. Maximum activation was achieved with 2 mol of ApbC per 1 mol of apo-Leu1. This article describes the first biochemical activity of ApbC in the context of [Fe-S] cluster metabolism. The data herein support a model in which ApbC coordinates an [4Fe-4S] cluster across its dimer interface and can transfer this cluster to an apoprotein acting as an [Fe-S] cluster scaffold protein, a function recently deduced for its eukaryotic homologues.  相似文献   

2.
Intact chloroplasts, purified from spinach leaves by sedimentation in density gradients of colloidal silica, incorporate labeled amino acids into at least 16 different polypeptides of the thylakoid membranes, using light as the only source of energy. The thylakoid products of chloroplast translation were visualized by subjecting membranes purified from chloroplasts labeled with [35S]methionine to electrophoresis in high-resolution, SDS-containing acrylamide gradient slab gels and autoradiography. The apparent mol wt of the labeled products ranged from less than 10,000 to greater than 70,000. One of the labeled products is the apoprotein of the P700-chlorophyll a- protein (CPI). The CPI apoprotein is assembled into a pigment-protein complex which is electrophoretically indistinguishable from the native CPI complex. Isolated spinach chloroplasts also incorporate [3H]leucine and [35S]methionine into cytochrome b559. The radioactive label remains with the cytochrome through all stages of purification: extraction of the thylakoid membranes with Triton X-100 and urea, adsorption of impurities on DEAE cellulose, two cycles of electrophoresis in Triton- containing polyacrylamide gels and electrophoresis in SDS-containing gradient gels. Cytochrome b559 becomes labeled with both [3H]leucine and [35S]methionine and accounts for somewhat less than 1% of the total isotopic incorporation into thylakoid protein. The lipoprotein appears to be fully assembled during the time-course of our labeling experiments.  相似文献   

3.
We have measured the X-ray absorption spectra of Fe in photosystem I (PS I) preparations from spinach and a thermophilic cyanobacterium, Synechococcus sp., to characterize structures of the Fe complexes that function as electron acceptors in PS I. These acceptors include centers A and B, which are probably typical [4Fe-4S] ferredoxins, and X. The structure of X is not known, but its electron paramagnetic resonance (EPR) spectrum has generated the suggestions that it is either a [2Fe-2S] or [4Fe-4S] ferredoxin or an Fe-quinone species. The iron X-ray absorption K-edge and iron extended X-ray absorption fine structure (EXAFS) spectra reveal that essentially all of the 11-14 Fe atoms present in the reaction center are present in the form of Fe-S centers and that not more than 1 atom out of 12 could be octahedral or oxygen-coordinated Fe. This suggests that, besides A and B, additional Fe-S clusters are present which are likely to be X. Our EXAFS spectra cannot be simulated adequately by a mixture of [4Fe-4S] ferredoxins with typical bond lengths and disorder parameters because the amplitude of Fe backscattering is small; however, excellent simulations of the data are consistent with a mixture of [2Fe-2S] ferredoxins and [4Fe-4S] ferredoxins, or with unusually distorted [4Fe-4S] clusters. We presume that the [2Fe-2S] or distorted [4Fe-4S] centers are X. The X-ray absorption spectra of PS I preparations from Synechococcus and spinach are essentially indistinguishable.  相似文献   

4.
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. M?ssbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.  相似文献   

5.
Ex novo enzymic synthesis of the two 4Fe-4S clusters of Clostridium pasteurianum ferredoxin has been achieved by incubation of the apoprotein with catalytic amounts of the sulfurtransferase rhodanese in the presence of thiosulfate, DL-dihydrolipoate and ferric ammonium citrate. This enzymic reconstitution procedure was compared to a chemical one, in which the enzyme was replaced by sodium sulfide. A further comparison was made with the results previously obtained in the enzymic synthesis of the 2Fe-2S cluster of spinach ferredoxin, allowing the following conclusions to be drawn. The nature of the cluster to be inserted into the reconstituted iron-sulfur protein is determined by the apoprotein itself. The refolding of the structure of the iron-sulfur proteins around the newly inserted cluster is the rate-limiting step in both chemical and enzymic reconstitution. Rhodanese appears to play a role in the recovery of the native architecture of the reconstituted iron-sulfur protein(s). The extension to the 4Fe-4S centers of the rhodanese-based biosynthetic system allows this enzymic route to be proposed as a general way to the in vivo synthesis of iron-sulfur structures.  相似文献   

6.
Purification and characterization of bovine tissue factor   总被引:20,自引:0,他引:20  
Tissue factor (tissue thromboplastin, factor III), an initiator of coagulation, has been purified 142,000-fold to homogeneity from bovine brain. The protein is an integral membrane glycoprotein with an apparent molecular weight of 43,000 as judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The apoprotein was first purified by extraction with Triton X-100 and repeated preparative polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Antiserum was produced against a few micrograms of purified apoprotein and was used to construct an immunoadsorbent column. The column was then used for affinity purification of the apoprotein directly from the Triton X-100 extract, thereby significantly increasing the amount of purified protein produced. The purification scheme may be generally useful for the rapid and large scale purification of membrane proteins. Tryptic digestion of the apoprotein in Triton X-100 cleaved a peptide of approximately 3000 daltons without affecting the activity. The activity was recovered directly from stained SDS polyacrylamide gels, and the profile of recovered activity corresponded directly with the stained bands. The activity shifted along with the protein band following tryptic digestion, thus demonstrating that the protein observed on the gels is tissue factor. The coagulant activity of the purified apoprotein was reconstituted by the addition of phospholipid. Optimal activity was observed at phospholipid to protein ratios (w/w) greater than 450:1.  相似文献   

7.
Camba R  Armstrong FA 《Biochemistry》2000,39(34):10587-10598
Rapid responses of biological [4Fe-4S] clusters to conditions of oxidative stress have been studied by protein-film voltammetry by using precise pulses of electrode potential to trigger reactions. Investigations with Clostridium pasteurianum 8Fe ferredoxin exploit the fact that [3Fe-4S] clusters display a characteristic pattern of voltammetric signals, so that their appearance and disappearance after an oxidative pulse can be tracked unambiguously under electrochemical control. Adsorbed to monolayer coverage at a graphite electrode, the protein initially shows a strong signal (B') at -0.36 V vs standard hydrogen electrode due to two [4Fe-4S](2+/+) clusters at similar potentials. Short square pulses (0.1-5 s) to potentials in the range 0.5-0.9 V cause extensive loss of B', and new signals appear (A'and C') that arise from [3Fe-4S] species (+/0 and 0/2- couples). The A' and B' intensities quantify transformations which are induced by the pulse and which occur subsequently when more reducing conditions are restored. Optimal [3Fe-4S] formation (in excess over [4Fe-4S]) is achieved with a 3-s pulse to 0.7 V, following which there is rapid partial recovery to yield a 1:1 3Fe:4Fe ratio, consistent with 7Fe protein. Thus, a 6Fe protein is formed, but one of the clusters is rapidly repaired. The [3Fe-4S]:[4Fe-4S] ratio follows a bell-shaped curve spanning the same potential range that defines complete loss of signals, while double-pulse experiments show that [3Fe-4S](+) resists further oxidative damage. Oxidative disassembly involves successive one-electron oxidations of [4Fe-4S] (i.e., 2+ --> 3+ --> 4+), with [3Fe-4S](+) being a relatively stable byproduct, that is, not an intermediate. Disassembly of [3Fe-4S] in the 7Fe protein continues after reducing conditions are restored, with lifetimes depending on oxidation level; thus 1+ (most stable) > 0 > 2-. In the presence of Fe(2+), the 0 level is stabilized by conversion back to [4Fe-4S](2+/+). By pulsing in the presence of Zn(2+), the [3Fe-4S] clusters that are formed are trapped rapidly as their Zn adducts.  相似文献   

8.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

9.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands.  相似文献   

10.
The potential relationship of an intact membrane organization for the synthesis of chondroitin and chondroitin 4-sulfate was examined after modification of a mouse mast cell microsomal system with the nonionic detergent, Triton X-100. The results indicated that Triton X-100 had no effect on the rate of polymerization but had a slight effect on the size of glycosaminoglycan chains. An "all or nothing" pattern of sulfation of newly formed chondroitin was obtained in both the presence and the absence of Triton X-100, and this pattern did not change whether sulfation was initiated concurrent with or subsequent to polymerization. Sulfation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system required Triton X-100 but still produced an all or nothing pattern rather than a random sulfation pattern. When a 100,000 x g supernatant fraction was utilized for sulfation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and a partial sulfation pattern was obtained. However, it was similar to the all or nothing pattern in that it still produced two populations, with some chains nonsulfated and others approximately 50% sulfated. When chondroitin hexasaccharide was used with 3'-phosphoadenylylphospho[35S]sulfate, multiple GalNAc residues of the individual hexasaccharides were found to be sulfated. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulfation of multiple GalNAc residues on the individual hexasaccharide molecules was even greater, so that trisulfated products were found. These results suggest that efficient sulfation of chondroitin is related to enzyme-substrate interaction more than to membrane organization.  相似文献   

11.
The effect of Triton X-100 on catalytic properties of acetylcholinesterase from human erythrocytes under acetylcholine hydrolysis, on sensitivity of acetylcholinesterase to specific phosphoorganic inhibitors and eserine, and on the mobility and isoenyme spectrum under analytical electrophoresis in polyacrylamide gel is investigated. Triton X-100, independently on its concentration within 0.05-1.0%, slightly changes V and [S]opt values and increases Km value in 2-3 times. The inhibitory effect of Triton X-100 is mainly competitive, 0.5% Triton X-100 decreases bimolecular constant (kII) of the interaction of acetylcholinesterase with phosphoorganic inhibitor and eserine in 2.5-4 times. In the presence of phosphoorganic inhibitor, kII sharply decreased when 0.02% Triton X-100 was added, and then it did not change under the increase of Triton X-100 concentration up to 1.0%. On the basis of these data, an analytical method of estimating Triton X-100 content in protein solution is proposed. The introduction of 0.1% Triton X-100 into polyacrylamide gel results in considerable quantitative redistribution of acetylcholinesterase isoenzyme fractions and in the change of the mobility of one fraction under electrophoresis.  相似文献   

12.
A new method for identification and quantitation of [2Fe-2S] and [4Fe-4S] types of iron-sulfur centers in proteins is presented. The method relies on the solubilization of C6H5SH, [Fe2S2(SC6H5)4]?2 and [Fe4S4(SC6H5)4]?2 in aqueous solutions containing 5–17 vol % N,N-dimethylformamide by 5 vol % Triton X-100. Quantitative removal of the Fe2S2 core of Spinach ferredoxin is achieved in media containing 80 vol % water. Advantages over previous core extrusion methods include avoidance of toxic hexamethylphosphoramide, a smaller percentage of organic solvent, increased sensitivity and (for Spinach ferredoxin) decreased extrusion time.  相似文献   

13.
An efficient procedure for affinity purification of human tissue factor apoprotein that requires binding of only microgram quantities of human factor VII to anti-factor VII agarose is described. Factor VII was added to a 2% Triton X-100 extract of acetone brain powder in the presence of calcium. The resultant factor VII/tissue factor/calcium complex was bound to anti-factor VII-agarose, and the bound tissue factor was then eluted with EDTA. The eluate was passed through anti-goat IgG-agarose to remove contaminating goat IgG that leaks from the anti-factor VII column. Yield (units of activity) was 27%; specific activity was 2400 U/mg, which corresponds to that reported by others. The purified apoprotein migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 47,000. Immunostaining with a goat anti-tissue factor IgG raised against the purified material yielded a major band of the same apparent molecular weight. Factor VII remains bound to the column and, therefore, for subsequent use preincubation of tissue factor with factor VII and calcium is not required. Thus, the present purification procedure markedly reduces the amount of factor VII needed as affinity ligand to purify tissue factor apoprotein.  相似文献   

14.
Genetic experiments have established that IscU is involved in maturation of [Fe-S] proteins that require either [2Fe-2S] or [4Fe-4S] clusters for their biological activities. Biochemical studies have also shown that one [2Fe-2S] cluster can be assembled in vitro within each subunit of the IscU homodimer and that these clusters can be reductively coupled to form a single [4Fe-4S] cluster. In the present work, it is shown that the [4Fe-4S] cluster-loaded form of A. vinelandii IscU, but not the [2Fe-2S] cluster-loaded form, can be used for intact cluster transfer to an apo form of A. vinelandii aconitase A, a member of the monomeric dehydratase family of proteins that requires a [4Fe-4S] cluster for enzymatic activity. The rate of [4Fe-4S] cluster transfer from IscU to apo-aconitase A was not affected by the presence of the HscA/HscB co-chaperone system and MgATP. However, an altered form of a [4Fe-4S] cluster-containing IscU, having the highly conserved aspartate-39 residue substituted with alanine, is an effective inhibitor of wild-type [4Fe-4S] cluster-loaded IscU-directed activation of apo-aconitase A. In contrast, neither the clusterless form of IscU nor the [2Fe-2S] cluster-loaded form of IscU is an effective inhibitor of IscU-directed apo-aconitase A activation. These results are interpreted to indicate that the [2Fe-2S] and [4Fe-4S] cluster-loaded forms of IscU adopt different conformations that provide specificity with respect to the maturation of [2Fe-2S] and [4Fe-4S] centers in proteins.  相似文献   

15.
Periplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple. A [4Fe-4S]1+ cluster EPR signal developed over a range of potentials between 300 and -200 mV and was best fitted to two sequential Nernstian n=1 curves with midpoint redox potentials of +183+/-10 mV (FS1) and -51+/-10 mV (FS3) for the two [4Fe-4S]1+/2+ cluster couples. Upon further reduction, the observed signal intensity of the [4Fe-4S]1+ cluster decreases. This change in intensity can again be fitted to an n=1 Nernstian component with a midpoint potential (E(m)) of about -356 mV (FS2). It is considered likely that, at low redox potential (E(m) less than -300 mV), the remaining oxidized cluster is reduced (spin S=1/2) and strongly spin-couples to a neighbouring [4Fe-4S]1+ cluster rendering both centres EPR-silent. The involvement of both [3Fe-4S] and [4Fe-4S] clusters in electron transfer to the active site of the periplasmic SER was demonstrated by the re-oxidation of the clusters under anaerobic selenate turnover conditions. Attempts to detect a high-spin [4Fe-4S] cluster (FS0) in SerA at low temperature (5 K) and high power (100 mW) were unsuccessful. The Mo(V) EPR recorded at 60 K, in samples poised at pH 6.0, displays principal g values of g3 approximately 1.999, g2 approximately 1.996 and g1 approximately 1.965 (g(av) 1.9867). The dominant features at g2 and g3 are not split, but hyperfine splitting is observed in the g1 region of the spectrum and can be best simulated as arising from a single proton with a coupling constant of A1 (1H)=1.014 mT. The presence of the haem-b moiety in SerC was demonstrated by the detection of a signal at g approximately 3.33 and is consistent with haem co-ordinated by methionine and lysine axial ligands. The combined evidence from EPR analysis and sequence alignments supports the assignment of the periplasmic SER as a member of the Type II molybdoenzymes and provides the first spectro-potentiometric insight into an enzyme that catalyses a key reductive reaction in the biogeochemical selenium cycle.  相似文献   

16.
Abstract: An improved procedure of the solubilization and purification of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase) from bovine cerebral white matter is reported. To remove easily extractable protein, the tissue was homogenised in 10 vol. of 0.5 M-ammonium acetate containing 10 mM-Tris. HCI, pH 6.9, at 4°C and centrifuged at 105,000 g for 60 min. The precipitate was extracted with 10 vol. of 0.5% Triton X-100 containing 10 mM-Tris. HCI, pH 6.9, and centrifuged, By this extraction, over 70% soluble protein could be removed in the supernatant and most CNPase activity was kept in the precipitate. The precipitate was extracted with 10 vol. of 1% Triton X-100 and 1 M-ammonium acetate mixture containing 10 mM-Tris.HCI, pH 8.2, and centrifuged at 105,000 g for 60 min. The extract contained 54% of CNPase and the specific activity was fivefold that of the original homogenate. Subsequently, the extractions were carried out with 2% Triton X-100-2 M-ammonium acetate and 4% Triton X-100-4 M-ammonium acetate at pH 8.2. The recovery of CNPase was found to be nearly 90% from the original homogenate, without loss of enzyme activity during extraction, while much CNPase activity was lost when guanidinium chloride was used as the extraction medium. Using the Triton X-100-ammonium acetate extract, several column chromatography techniques were applied to purify the enzyme. In the first step, Phenyl-Sepharose CL-4B column chromatography was performed by eluting with a double-linear gradient of ammonium acetate and Triton X-100. In the second step, the fraction containing CNPase after Phenyl-Sepharose CL-4B column chromatography was applied to a Sepharose 6B column and the enzyme was eluted with 1% Triton X-100- I M-ammonium acetate, pH 8.2. The peak containing CNPase was applied to CM-Sepharose CL-6B column chromatography in the final step. The enzyme was eluted with a linear gradient of KCI. In this step, CNPase eluted as a sharp peak and the specific activity was approximately 2300 pmol 2′-AMP formed/min/mg protein. The recovery of CNPase from the original homogenate was about 50%. By the isoelectrofocusing technique, the pI of CNPase was found to be 8.6. When Reisfeld polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis were carried out on the purified CNPase, only one protein band, corresponding to CNPase activity, was detected. Its molecular weight was estimated to be approximately 51,000 as the active enzyme form. K, value of the purified enzyme for 2′,3′-CAMP calculated from a Lineweaver-Burk plot was 3.13 mM.  相似文献   

17.
The combination of low temperature EPR, magnetic circular dichroism, and resonance Raman spectroscopies reveals the presence of a single [3Fe-4S]+,0 center as the sole iron-sulfur prosthetic group in glutamate synthase from spinach leaves. The electronic, magnetic, and structural properties of the oxidized and reduced cluster are analogous with those of similar clusters in bacterial ferredoxins. It was not possible to convert the [3Fe-4S] cluster to a [4Fe-4S] cluster by incubating with iron under reducing conditions. Taken together with the published amino acid sequence data for plant and bacterial glutamate synthases, this suggests that the [3Fe-4S] cluster is not an isolation artifact resulting from oxidative degradation of a [4Fe-4S] cluster. The likelihood that a [3Fe-4S] cluster is an intrinsic component of all plant and bacterial glutamate synthases is discussed.  相似文献   

18.
During the interconversion of the various cluster types observed in aconitase ([4Fe-4S]1+,2+, [3Fe-4S]0,1+, cubane, or linear types) and production of apoenzyme, changes int he state of the sulfur ligands (RSH and S2-) are bound to occur. We have attempted to obtain information on such changes by interception of SH groups and/or by analysis of the resulting cluster or apoprotein for various forms of sulfur and enzymatic activity. During cluster interconversions no evidence was obtained for changes in SH titer that could be associated with cluster ligands. We conclude from this that the ligand exchange at the cluster is too rapid to allow trapping even by SH reagents of low Mr. The possibility that released SH becomes buried in the protein structure and unreactive cannot be entirely discounted. On formation of the apoenzyme by oxidation with ferricyanide, four SH groups per molecule became unavailable for reaction with 5,5'-dithiobis(2-nitrobenzoic acid); instead, while the holoenzyme contains no disulfides or S(0), two di- or polysulfides were found in the apoenzyme indicating that, on an average, four SH groups and three of the original four S(2-) ligands are trapped as RS-Sx-SR. In agreement with this conclusion is the fact that the apoenzyme can be reconstituted without addition of S(2-). A convenient preparative procedure for reconstitutable apoenzyme in 75% yield is [3Fe-4S] and [4Fe-4S] clusters with a variety of combinations of iron and sulfur isotopes as required for M?ssbauer, resonance Raman, and electron nuclear double resonance studies.  相似文献   

19.
The possibility that clusters containing the Fe4S4 core unit found in a wide variety of proteins can effect reductive transformations of Fe-S enzyme substrates has been investigated using the reduced synthetic clusters [Fe4S4(SPh)4]3- and acetylene, an alternate nitrogenase substrate. The system [Fe4S4(SPh)4]3-/acetic acid/acetic anhydride in N-methylpyrollidinone at approximately 25 degrees was found to reduce acetylene homogeneously to ethylene, and in the presence of a deuterium source to afford as the principal stereochemical product cis-1,2-C2H2D2. No appreciable reduction was found using the oxidized cluster [Fe4S4(SPh)4]2-. The system is not catalytic and departs from the strict stoichiometry of the reaction, 2[Fe4S4(SPh)4]3- + C2H2 + 2H+ leads to 2 [Fe4S4(SPh)4]2- + C2H4, primarily because of a competing cluster oxidation reaction which could not be eliminated. Based on this reaction ca. 60% conversion of acetylene to ethylene was achieved. A reaction sequence based on absorption and 1H nmr spectral observations and product stereo-chemistry is suggested. The results demonstrate that biologically related, reduced Fe4S4 clusters can effect reduction of at least one Fe-S enzyme substrate, and raise the general possibility of substrate transformation with such clusters as reaction sites in biological systems.  相似文献   

20.
A particulate membrane fraction from Saccharomyces cerevisiae contains transferases which catalyze the incorporation of N-acetylglucosamine from UDP-N-acetylglucosamine into a lipid fraction as well as into a protein fraction. The lipid fraction contains two alkali-stable lipids which can be separated on a silica G-60 column. The sugar moieties of these polyprenoid lipids are: N-acetylglucosamine and di-N-acetylchitobiose. The transfer of carbohydrate from isolated glycolipids to endogenous protein has been examined. After separation of protein and saccharide by hydrazinolysis and reacetylation only di-N-acetylchitobiose is found, and also when glycolipid containing only one N-acetylglucosamine is used as substrate. Maximum transfer of saccharides from glycolipids to protein is obtained at a Triton X-100 concentration of 1%. At this Triton X-100 concentration there is practically no transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the phosphorylated lipid. Therefore, when polyprenyl diphosphate N-acetyl[3H]-glucosamine is incubated together with UDP-N-acetyl[14C]glucosamine with the membrane fraction in the presence of 1% Triton X-100, a doubly labelled di-N-acetylchitobiose linked to lipid is formed with N-acetyl[14C]glucosamine at the non-reducing end of the chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号