首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
This study is a phylogenetic analysis of the avian family Ciconiidae, the storks, based on two molecular data sets: 1065 base pairs of sequence from the mitochondrial cytochromebgene and a complete matrix of single-copy nuclear DNA–DNA hybridization distances. Sixteen of the nineteen stork species were included in the cytochromebdata matrix, and fifteen in the DNA–DNA hybridization matrix. Both matrices included outgroups from the families Cathartidae (New World vultures) and Threskiornithidae (ibises, spoonbills). Optimal trees based on the two data sets were congruent in those nodes with strong bootstrap support. In the best-fit tree based on DNA–DNA hybridization distances, nodes defining relationships among very recently diverged species had low bootstrap support, while nodes defining more distant relationships had strong bootstrap support. In the optimal trees based on the sequence data, nodes defining relationships among recently diverged species had strong bootstrap support, while nodes defining basal relationships in the family had weak support and were incongruent among analyses. A combinable-component consensus of the best-fit DNA–DNA hybridization tree and a consensus tree based on different analyses of the cytochromebsequences provide the best estimate of relationships among stork species based on the two data sets.  相似文献   

2.
Phylogenetic studies incorporating multiple loci, and multiple genomes, are becoming increasingly common. Coincident with this trend in genetic sampling, model-based likelihood techniques including Bayesian phylogenetic methods continue to gain popularity. Few studies, however, have examined model fit and sensitivity to such potentially heterogeneous data partitions within combined data analyses using empirical data. Here we investigate the relative model fit and sensitivity of Bayesian phylogenetic methods when alternative site-specific partitions of among-site rate variation (with and without autocorrelated rates) are considered. Our primary goal in choosing a best-fit model was to employ the simplest model that was a good fit to the data while optimizing topology and/or Bayesian posterior probabilities. Thus, we were not interested in complex models that did not practically affect our interpretation of the topology under study. We applied these alternative models to a four-gene data set including one protein-coding nuclear gene (c-mos), one protein-coding mitochondrial gene (ND4), and two mitochondrial rRNA genes (12S and 16S) for the diverse yet poorly known lizard family Gymnophthalmidae. Our results suggest that the best-fit model partitioned among-site rate variation separately among the c-mos, ND4, and 12S + 16S gene regions. We found this model yielded identical topologies to those from analyses based on the GTR+I+G model, but significantly changed posterior probability estimates of clade support. This partitioned model also produced more precise (less variable) estimates of posterior probabilities across generations of long Bayesian runs, compared to runs employing a GTR+I+G model estimated for the combined data. We use this three-way gamma partitioning in Bayesian analyses to reconstruct a robust phylogenetic hypothesis for the relationships of genera within the lizard family Gymnophthalmidae. We then reevaluate the higher-level taxonomic arrangement of the Gymnophthalmidae. Based on our findings, we discuss the utility of nontraditional parameters for modeling among-site rate variation and the implications and future directions for complex model building and testing.  相似文献   

3.
Studies have been undertaken to explore the applicability of different kinetic models for the performance appraisal of upflow anaerobic sludge blanket (UASB) reactors treating wastewater in the range of 300-4000 mg COD/l. Three kinetic models namely, Monod, Grau second-order, and Haldane model are considered for the analysis. Both linear and nonlinear regressions have been performed to examine the best-fit among the kinetic models. In this process, five error analysis methods have been used to analyze the data. Apart from optimization of kinetic coefficients with minimization of associated errors, prediction of effluent COD has also been undertaken to verify the applicability of kinetic models. In both the cases, Grau second-order model is found to be the best class of fit for wide range of data sets in UASB reactor.  相似文献   

4.
Despite the proliferation of increasingly sophisticated models of DNA sequence evolution, choosing among models remains a major problem in phylogenetic reconstruction. The choice of appropriate models is thought to be especially important when there is large variation among branch lengths. We evaluated the ability of nested models to reconstruct experimentally generated, known phylogenies of bacteriophage T7 as we varied the terminal branch lengths. Then, for each phylogeny we determined the best-fit model by progressively adding parameters to simpler models. We found that in several cases the choice of best-fit model was affected by the parameter addition sequence. In terms of phylogenetic performance, there was little difference between models when the ratio of short: long terminal branches was 1:3 or less. However, under conditions of extreme terminal branch-length variation, there were not only dramatic differences among models, but best-fit models were always among the best at overcoming long-branch attraction. The performance of minimum-evolution-distance methods was generally lower than that of discrete maximum-likelihood methods, even if maximum-likelihood methods were used to generate distance matrices. Correcting for among-site rate variation was especially important for overcoming long-branch attraction. The generality of our conclusions is supported by earlier simulation studies and by a preliminary analysis of mitochondrial and nuclear sequences from a well-supported four-taxon amniote phylogeny.  相似文献   

5.

Background

Amino acid replacement rate matrices are a crucial component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Ideally, the rate matrix reflects the mutational behavior of the actual data under study; however, estimating amino acid replacement rate matrices requires large protein alignments and is computationally expensive and complex. As a compromise, sub-optimal pre-calculated generic matrices are typically used for protein-based phylogeny. Sequence availability has now grown to a point where problem-specific rate matrices can often be calculated if the computational cost can be controlled.

Results

The most time consuming step in estimating rate matrices by maximum likelihood is building maximum likelihood phylogenetic trees from protein alignments. We propose a new procedure, called FastMG, to overcome this obstacle. The key innovation is the alignment-splitting algorithm that splits alignments with many sequences into non-overlapping sub-alignments prior to estimating amino acid replacement rates. Experiments with different large data sets showed that the FastMG procedure was an order of magnitude faster than without splitting. Importantly, there was no apparent loss in matrix quality if an appropriate splitting procedure is used.

Conclusions

FastMG is a simple, fast and accurate procedure to estimate amino acid replacement rate matrices from large data sets. It enables researchers to study the evolutionary relationships for specific groups of proteins or taxa with optimized, data-specific amino acid replacement rate matrices. The programs, data sets, and the new mammalian mitochondrial protein rate matrix are available at http://fastmg.codeplex.com.  相似文献   

6.
Species–climate ‘envelope’ models are widely used to evaluate potential climate change impacts upon species and biodiversity. Previous studies have used a variety of methods to fit models making it difficult to assess relative model performance for different taxonomic groups, life forms or trophic levels. Here we use the same climatic data and modelling approach for 306 European species representing three major taxa (higher plants, insects and birds), and including species of different life form and from four trophic levels. Goodness‐of‐fit measures showed that useful models were fitted for >96% of species, and that model performance was related neither to major taxonomic group nor to trophic level. These results confirm that such climate envelope models provide the best approach currently available for evaluating reliably the potential impacts of future climate change upon biodiversity.  相似文献   

7.
The distribution of selection coefficients of new mutations is of key interest in population genetics. In this paper we explore how codon-based likelihood models can be used to estimate the distribution of selection coefficients of new amino acid replacement mutations from phylogenetic data. To obtain such estimates we assume that all mutations at the same site have the same selection coefficient. We first estimate the distribution of selection coefficients from two large viral data sets under the assumption that the viral population size is the same along all lineages of the phylogeny and that the selection coefficients vary among sites. We then implement several new models in which the lineages of the phylogeny may have different population sizes. We apply the new models to a data set consisting of the coding regions from eight primate mitochondrial genomes. The results suggest that there might be little power to determine the exact shape of the distribution of selection coefficient but that the normal and gamma distributions fit the data significantly better than the exponential distribution.  相似文献   

8.
9.
Codon substitution models have traditionally been parametric Markov models, but recently, empirical and semiempirical models also have been proposed. Parametric codon models are typically based on 61×61 rate matrices that are derived from a small number of parameters. These parameters are rooted in experience and theoretical considerations and generally show good performance but are still relatively arbitrary. We have previously used principal component analysis (PCA) on data obtained from mammalian sequence alignments to empirically identify the most relevant parameters for codon substitution models, thereby confirming some commonly used parameters but also suggesting new ones. Here, we present a new semiempirical codon substitution model that is directly based on those PCA results. The substitution rate matrix is constructed from linear combinations of the first few (the most important) principal components with the coefficients being free model parameters. Thus, the model is not only based on empirical rates but also uses the empirically determined most relevant parameters for a codon model to adjust to the particularities of individual data sets. In comparisons against established parametric and semiempirical models, the new model consistently achieves the highest likelihood values when applied to sequences of vertebrates, which include the taxonomic class where the model was trained on.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号