首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary A panel of 10 FITC-labelled lectins (MPA, PNA, ConA, DBA, SBA, RCA-120, WGA, UEA, GS-I, GS-II) was applied to cryosections of seven specimens of normal urothelium. Seven of the lectins (MPA, ConA, RCA, WGA, UEA, GS-I and GS-II) showed a pattern of increasing fluorescence intensity from basal to superficial cells of the urothelium whereas PNA, DBA and SBA showed more uniform binding throughout the urothelium. Urothelial cell suspensions labelled with FITC-lectins were studied by flow cytometry to quantify the variation in binding to different cells types. Three cellular subpopulations were identified in normal urothelium on the basis of their optical properties. Fluorescence intensity due to specific lectin binding was then measured separately for each subpopulation. Although there was some variation among individual cases, a general pattern emerged in this small series. WGA, RCA, and GS-II bind in large quantities to all urothelial cells while PNA, SBA, ConA and DBA show little binding. MPA, RCA, UEA and GS-I showed the most marked increase in fluorescence intensity from basal to superficial cells as observed microscopically and quantified by flow cytometry.  相似文献   

2.
Summary Flow cytometry was used to measure the binding of a panel of ten fluorescein isothiocyanate(FITC)-conjugated lectins to fifteen samples of normal and neoplastic human urothelium. Concurrent measurement of light scattering and fluorescence permitted the quantification of lectin binding to cellular subpopulations defined by their light-scattering properties. In normal urothelium, we previously demonstrated levels of lectin binding to the cellular subpopulations derived from the superficial and intermediate cell layers which were higher than levels which bound to the subpopulation derived from the basal cell layer (Wardet al., 1987). This difference was most marked withMaclura pomifera agglutinin (MPA),Ricinus communis agglutinin (RCA) andUlex europus agglutinin (UEA). We now report a similar correlation between the degree of differentiation of a cellular subpopulation and the level of lectin binding in human transitional cell carcinomas (TCCs). Morphological differentiation in human TCCs is accompanied by alterations in cell-surface carbohydrates which are similar to those which accompany cellular differentiation in the corresponding normal tissue. No systematic difference in lectin binding was observed between the corresponding subpopulations of normal and neoplastic urothelial cells.  相似文献   

3.
Summary Coupled ligand-colloidal gold complexes were found to provide a convenient approach for the localization by scanning electron microscopy of cell surface membrane antigens and lectin-binding sites on bladder urothelium and for the immunocytochemical identification of urothelial cell populations at different stages of differentiation. The ligands used to probe the membrane were a urothelium-specific rabbit antibody raised to a urothelial membrane-associated antigen (UMA), and two lectins: Concanavalin A (Con A) and peanut agglutinin (PNA). A complex luminal surface distribution pattern was demonstrated by the UMA antigen related to the stage of urothelial cell maturation and differentiation. UMA could be detected on the surface of immature and early differentiating intermediate cells, but was absent from the late differentiation stage, becoming re-expressed as the cells matured and was found in greatest abundance on the terminally differentiated superficial cells. It was absent on cells in benign hyperplasia of the urothelium. Cellular and regional differences in lectin binding to the urothelial cell surface was suggested with Con A receptors localized uniformly over the superficial cells, and PNA receptors confined to linear arrays or occasional clusters over the apical surface but evenly dispersed over the lateral surface of these cells.  相似文献   

4.
Postnatal growth and renewal of mouse urothelium start on the day of birth. In the present study, temporal and spatial dimensions of urothelial growth were studied during the first two postnatal weeks. Quantitative analysis showed that the rate of urothelial cell proliferation is significantly higher during all 14 postnatal days than in adult mice. Three peaks of proliferative and mitotic activity were revealed: on the day of birth and postnatal day 1, on days 6 and 7, and on day 14. The high proliferation rate around the day of birth and at postnatal days 6 and 7 coincides with cell death in the urothelium. Semiquantitative analysis showed that during all 14 postnatal days, the urothelial proliferative response is mostly confined to the basal cell layer. Urothelial cells divide predominantly in parallel to the plain of the urothelium on all chosen postnatal days. Increased portions of urothelial cells, dividing perpendicularly to the urothelium were observed only on the day of birth and on postnatal day 7. Our results suggest that postnatal growth of mouse urothelium is particularly the result of an increasing number of cells in individual cell layers and not the result of an increasing number of cell layers.  相似文献   

5.
Cell cycle of normal bladder urothelium in developing and adult mice   总被引:5,自引:0,他引:5  
The present research has employed a novel, nonradioactive technique to quantitatively study normal urothelial proliferation in foetal, neonatal, juvenile and adult mouse bladder. Using whole mount histological preparations, the total number of urothelial nuclei per mouse bladder, and per given urothelial cell layer, have been assessed to provide data of the (unstimulated) kinetic behaviour of basal urothelial cells (the proliferative population), to analyse characteristics of the normal urothelial cell cycle. The urothelial cell cycle time increases from 30.6 h (foetal) to 40 weeks (adult), the duration of mitosis from 0.23 h (foetal) to 2.71 h (adult) and the duration of DNA synthesis from 2.52 h (neonatal) to 10.83 h (adult). These are average values for the urothelial cell cycle, which do not preclude the possible existence of proliferative units. The ratio of superficial nuclei to basal and intermediate nuclei, possibly indicative of a urothelial proliferative unit, declines to reach a plateau (1:40) in adult mice. These findings indicate that rapid urothelial proliferation during early murine development was likely to be a) biologically useful, since intrauterine foetal metabolic activity may require a functional bladder urothelium at an early stage, b) kinetically similar to acutely regenerating adult urothelial cells after cytotoxic insult. During murine life, the range of durations of mitosis and DNA synthesis is much less than the range of cell cycle times. Normal unstimulated urothelium of adult mice was confirmed to proliferate slowly.  相似文献   

6.
The localisation of actin filaments was studied in rat urothelial cells during differentiation which accompanied regeneration after cell damage induced by cyclophosphamide (CP). By immunofluorescence it was established that actin filaments equally stained along the cell circumference in basal and intermediate cells, while basolateral cell membrane expression was found in terminally differentiated superficial cells. During regeneration, after CP treatment, simple urothelial hyperplasia developed with smaller cuboidal superficial cells, in which actin filaments were equally distributed under the apical and basolateral plasma membranes. As demonstrated by immunoelectron microscopy, the apical surface of these superficial cells was covered with microvilli containing bundles of actin filaments. Within 1 week, the urothelium reverted to its normal three-layer thickness. Superficial cells became larger and flattened and the unthickened apical plasma membrane matured into a thick asymmetric unit membrane. Concomitantly actin filaments disappeared from apical areas of superficial cells while remaining abundant at basolateral areas. Our results indicate that in the urothelium subcellular distribution of actin filaments can be considered as a marker of cell differentiation. Accepted: 16 September 1999  相似文献   

7.
Superficial cell desquamation followed by differentiation of newly exposed superficial cells induces regeneration of the urinary bladder epithelium, urothelium. In the present work, chitosan was evaluated as a new inducer of urothelial cell desquamation, in order to study the regeneration of mouse urothelial cells in vivo. Intravesical application of chitosan dispersion caused complete removal of only the superficial layer of cells within 20 min of treatment. Differentiation of the new superficial layer was followed by the appearance and distribution of three urothelial differentiation markers, tight junction protein ZO1, cytokeratin 20 and the maturation of the apical plasma membrane. The arrangement of ZO1 into continuous lines in individual cells of the intermediate layer was already found after 10 min of chitosan application, when desquamation had just started. The appearance of the apical membrane changed from microvillar to typically scalloped within 20 min of regeneration, while complete arrangement of the cytokeratin 20 network took 60 min. These findings provide a new perspective on the rate of the differentiation process in the urothelium and make chitosan a new and a very controllable tool for studies on urothelial regeneration.  相似文献   

8.
Using primary explant cultures of mouse bladder, the early response of the urothelium after superficial and full-thickness injuries was investigated. In such an in vitro wound healing model, explant surfaces with a mostly desquamated urothelial superficial layer represented superficial wounds, and the exposed lamina propria at the cut edges of the explants represented full-thickness wounds. The urothelial cell ultrastructure, the expression and subcellular distribution of the tight junctional protein occludin, and differentiation-related proteins CK 20, uroplakins, and actin were followed. Since singular terminally differentiated superficial cells remained on the urothelium after superficial injury (i.e., original superficial cells), we sought to determine their role during the urothelial wound-healing process. Ultrastructural and immunocytochemical studies have revealed that restored tight junctions are the earliest cellular event during the urothelial superficial and full-thickness wound-healing process. Occludin-containing tight junctions are developed before the new superficial cells are terminally differentiated. New insights into the urothelium wound-healing process were provided by demonstrating that the original superficial cells contribute to the urothelium wound healing by developing tight junctions with de novo differentiated superficial cells and by stretching, thus providing a large urothelial surface with asymmetric unit membrane plaques.  相似文献   

9.
Human bladder urothelium is able to secrete tissue-type plasminogen activator (tPA). The aim of our study was to analyse localisation of tPA antigen in comparison to differentiation state of cells in samples of histologically normal urothelium and non-invasive tumours of the human urinary bladder. Twenty-five samples of normal urothelium and 31 non-invasive papillary tumours from 36 patients were examined. The presence of tPA antigen was evaluated immunohistochemically. Differentiation of superficial cells was assessed by the presence of urothelial cell differentiation markers, uroplakins (UPs; immunohistochemistry) and cell's apical surface architecture (scanning electron microscopy). All tissue samples stained anti-tPA positive. In normal urothelium, the intensity of anti-tPA staining was the strongest in superficial cells, which were well-differentiated. In tumours, all cell layers stained anti-tPA positive. The intensity of anti-tPA positive reaction in the upper cell layer correlated with the percentage of anti-UP positive superficial cells. Superficial cells showed various differentiation states. The localisation of tPA antigen in human in vivo tissue is not confined to the well-differentiated superficial cells. Our results suggest a positive correlation between tPA secretion and cell differentiation.  相似文献   

10.
A sodium saccharin (NaSac) diet was used to induce cell damage and regeneration in the urothelium of the male rat urinary bladder. Foci of terminally differentiated superficial cell exfoliation were detected after 5 weeks and their number increased after 10 and 15 weeks of the diet. At the sites of superficial cell loss, regenerative simple hyperplasia developed. Within 5 weeks of NaSac removal, regeneration re-established normal differentiated urothelium. In order to follow urothelial differentiation during regeneration we studied the expression of uroplakins and cytokeratins by means of immunocytochemistry and immunohistochemistry, respectively. Normal urothelium was characterised by terminally differentiated superficial cells which expressed uroplakins in their luminal plasma membrane and cytokeratin 20 (CK20) in the cytoplasm. Basal and intermediate cells were CK20 negative and cytokeratin 17 (CK17) positive. In hyperplastic urothelium all cells synthesised CK17, but not CK20. Differentiation of the superficial layer was reflected in three successive cell types: cells with microvilli, cells with rounded microridges and those with a rigid-looking plasma membrane on the luminal surface. The cells with microvilli did not stain with anti-uroplakin antibody. When the synthesis of uroplakins was detected rounded microridges were formed. With the elevated expression of uroplakins the luminal plasma membrane becomes rigid-looking which is characteristic of asymmetric unit membrane of terminally differentiated cells. During differentiation, syn-thesis of CK17 ceased in superficial cells while the synthesis of CK20 started. These results indicate that during urothelial regeneration after NaSac treatment, specific superficial cell types develop in which the switch to uroplakin synthesis and transition from CK17 to CK20 synthesis are crucial events for terminal differentiation. Accepted: 19 August 1997  相似文献   

11.
Acetylcholine (ACh) and its receptors play a crucial role in bladder physiology. Here, we investigated the presence of muscarinic receptor subtypes (MR) and nicotinic acetylcholine receptor (nAChR) alpha-subunits in the mouse urothelium by RT-PCR and immunohistochemistry. With RT-PCR, we detected mRNAs coding for all of the five different MR subtypes and for the nicotinic receptor subunits alpha2, alpha4, alpha5, alpha6, alpha7, alpha9 and alpha10, whereas the alpha3-subunit was not expressed. Using immunohistochemistry, we localised a panel of acetylcholine receptors in the different layers of the murine bladder urothelium, with predominant appearance in the basal plasma membrane of the basal cell layer and in the apical membrane of the umbrella cells. M2R and subunit alpha9 were observed exclusively in the umbrella cells, whereas the MR subtypes 3-5 and the nAChR subunits alpha4, alpha7 and alpha10 were also detected in the intermediate and basal cell layers. The subunit alpha5 was localised only in the basal cell layer. In conclusion, the murine urothelium expresses multiple cholinergic receptors, including several subtypes of both MR and nAChR, which are differentially distributed among the urothelial cell types. Since these receptors have different electrophysiological and pharmacological properties, and therefore are considered to be responsible for different cellular responses to ACh, this differential distribution is expected to confer cell type-specificity of cholinergic regulation in the bladder urothelium.  相似文献   

12.
The objective of this study is to establish a reliable cell culture system for the long-term culture of rat urothelial cells (RUC), in which the cells multiply in vitro and form stratified polarized urothelium. Urothelial cells were harvested by the enzymatic digestion of the urothelium exposed by the eversion of resected rat bladders. Primary cultures were initiated in keratinocyte serum-free medium (KSFM) for selective proliferation of urothelial cells. Subsequently, the cells were propagated in a mixture of conditioned medium (CM) derived from Swiss 3T3 cell culture supernatant and KSFM (CM-KSFM). Mean population doubling time was 13.8 +/- 0.9 h. RUC were successfully maintained for 18 passages over a period of 4-5 mo. Detailed investigations of culture conditions showed that CM-KSFM yielded a differentiated multilayer structure. The stratified urothelial sheets measuring 4 x 6 cm2 could be formed and then detached using dispase. Cytokeratin pattern in both the cultured urothelial monolayer and engineered stratified layers was similar to those seen in vivo, as assessed with monoclonal antibody against cytokeratin 17. Ultrastructural morphology showed microvilli, basal cell layer, and desmosomes between adjacent cells in the stratified urothelium.  相似文献   

13.
Postnatal restoration of the mouse urinary bladder urothelium   总被引:2,自引:2,他引:0  
Mouse urothelium is disrupted just before birth, followed by a postnatal restoration process which includes cell proliferation, death and differentiation. We assessed urothelial proliferation by the expression of proliferating cell nuclear antigen (PCNA), desquamation by electron microscopy, and apoptosis by TUNEL staining and urothelial differentiation by the expression of uroplakins and cytokeratin 20 (CK20) as well as the apical plasma membrane maturation. Our results indicated that urothelial proliferation was high from birth until about the 14th postnatal day. A majority of basal cells and even occasional superficial cells were PCNA positive during the first 5 postnatal days. Cell death occurred during the first 9 postnatal days. Between birth and day 5, single cells underwent apoptosis, whereas between days 6 and 9 cells mainly desquamated. CK20 and uroplakins were expressed in all superficial cells in postnatal urothelium. Their subcellular distribution characteristically changed in accordance with the progressive differentiation of superficial cells. During the urothelial postnatal development, proliferation activity slowly decreases to the proliferatively quiescent urothelium of the adult animal. Apoptosis is present in the first 9 postnatal days and within a few days of this period it appears simultaneously with desquamation. Superficial urothelial cells gradually differentiate, which is reflected in the changeable morphology of the apical plasma membrane.  相似文献   

14.
Processes leading to the recovery of a normal three-layered urothelium from a hyperplastic urothelium induced by cyclophosphamide (CP) treatment in rats have been investigated. A single intraperitoneal (ip) dose of CP caused extensive loss of cells from urothelium, but the remaining cells started to express epidermal growth factor receptor (EGFR) in their plasma membranes. On day 2 after CP injection, proliferating cell nuclear antigen (PCNA) immunohistochemistry showed a rapid increase in positively stained nuclei, from which a hyperplastic urothelium developed, composed of undifferentiated cells expressing EGFR over the entire plasma membrane. Subsequently, EGFR gradually disappeared from the apical plasma membrane but remained in the basolateral membranes. After day 6, PCNA-positive nuclei in all cell layers decreased, except in basal cells. Apoptotic cells were detectable by the TUNEL assay at day 2, and increased in number in all layers of the hyperplastic urothelium until day 10, returning to the control levels by day 14. Electron microscopic evidence showed that apoptotic cells were either pinched off into the bladder lumen or phagocytosed by the neighbouring urothelial cells. Thus, the urothelium responds to the damage by intense proliferation for a week, resulting in an undifferentiated hyperplastic state. Differentiation of superficial cells then begins and damaged cells are gradually removed by apoptosis until the three-layered urothelium is fully restored by two weeks following CP treatment.  相似文献   

15.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

16.
17.
We investigated the enzymes involved in the NADPH-diaphorase (d) reaction in the rat and pig bladder urothelium. The urothelial cell layer displayed intense and uniform NADPH-d activity. Preincubation with the flavoprotein inhibitor diphenyleneiodionium chloride (DPI) and the alkaline phosphatase inhibitor levamisole concentration-dependently decreased the urothelial NADPH-d activity. Immunoreactivities to neuronal (n), endothelial (e), or inducible (i) nitric oxide synthase (NOS) were not detected in rat or pig urothelial cells. In rats, the urothelium was uniformly immunoreactive for NADPH cytochrome P450 reductase, whereas the pig urothelium displayed inconsistent labeling. In lipopolysaccharide (LPS)-treated rats, the bladder urothelium showed positive iNOS immunoreactivity. The iNOS labeling was found predominantly in cells located in the basal layer of the urothelium. In the pig bladder mucosa, a Ca2+-dependent NOS activity was evident in cytosolic and particulate fractions that was quantitatively comparable to the NOS activity found in the smooth muscle. In ultrastructural studies of urothelial cells, NADPH-d reaction products were found predominantly on membranes of the nuclear envelope, endoplasmatic reticulum and mitochondria. In conclusion, NADPH-d staining of the urothelium cannot be taken as an indicator for the presence of constitutively expressed NOS. Activity of alkaline phosphatase and cytochrome P450 reductase may account for part of the NADPH-d reaction in urothelial cells. However, LPS treatment of rats caused expression of iNOS in urothelial cells.  相似文献   

18.
The present study was conducted to investigate cell death, proliferation and inducible nitric oxide synthase (iNOS) immunoreactivity in rat urothelium within 24 h after a single intraperitoneal dose of cyclophosphamide (CP). Necrotic cells were identified predominantly in the superficial cell layer from 1 h until 6 h after CP injection, most of them desquamating from the urothelium into the lumen of the urinary bladder. Active caspase-3 immunohistochemistry revealed apoptotic cells from 12 h until 24 h after CP injection. The apoptotic index reached a peak at 18 h and then rapidly dropped. Simultaneously with the decrease of apoptosis, the proliferation index increased from 18 h until 24 h after CP treatment. Immunoreaction to iNOS was first detected at 6 h in basal and intermediate cells. Later, iNOS immunoreactivity became stronger and was present in all cell layers. Our results suggest that the destruction of rat urothelium during 24 h after CP administration is due not only to necrosis, but also to apoptosis. The first 6 h are characterised by necrotic changes and no iNOS immunoreactivity. Thereafter, apoptosis and iNOS immunoreactivity are observed within the damaged urothelium. At 24 h after CP injection, iNOS immunoreactivity is still present, but proliferation prevails over cell death, enabling the urothelium to start regeneration.  相似文献   

19.
The differentiation of urothelial cells is characterized by the synthesis of uroplakins and their assembly into the asymmetric unit membrane. The Golgi apparatus (GA) has been proposed to play a central role in asymmetric unit membrane formation. We have studied the distribution and organization of the GA in normal mouse urothelial cells and in the superficial urothelial cells that undergo differentiation following cyclophosphamide-induced regeneration, in correlation with urothelial cell differentiation. In normal urothelium, immature basal cells have a simple GA, which is small and distributed close to the nucleus. In intermediate cells, the GA starts to expand into the cytoplasm, whereas the GA of terminally differentiated umbrella cells is complex, being large and spread over the whole basal half of the cytoplasm. During early stages of regeneration after cyclophosphamide treatment, the GA of superficial cells is simple and no markers of urothelial differentiation (uroplakins or asymmetric unit membranes, discoidal or fusiform vesicles, apical surface covered with microvilli) are expressed. At a later stage, the GA expands and, in the final stage of regeneration, when cells express all markers of terminal urothelial differentiation, the GA become complex once again. Our results show that: (1) GA distribution and organization in urothelial cells is differentiation-dependent; (2) the GA matures from a simple form in partially differentiated cells to a complex form in terminally differentiated superficial cells; (3) major rearrangements of GA distribution and organization correlate with the beginning of asymmetric unit membrane production. Thus, GA maturation seems to be crucial for asymmetric unit membrane formation. The work was supported by the Ministry of Education and Sport, Government of Republic of Slovenia, Slovenia (grant no. 3311-04-831450).  相似文献   

20.
Basal and secretory cells have been separated as highly enriched viable populations from single-cell suspensions of rat tracheal epithelial cells. Isolation of the populations was achieved by preparation of a cell suspension and separation by flow cytometry using contour maps generated from 2 degrees and 90 degrees light scatter signals. Flow cytometric analysis of cells showed 10% of the whole preparation were cells in SG2M phase of the cell cycle. The secretory cells accounted for 86% of these cycling cells; the remainder were accounted for by the basal cells. Culture of sorted populations of basal and secretory cells in serum free defined medium showed that basal cells had a lower (0.6%) colony-forming efficiency than secretory cells (3.4%). Significant differences in blue auto-fluorescence, Hoechst 33342 uptake, and lectin staining were apparent between basal and secretory cells. These results suggest that the secretory cell rather than the basal cell is primarily the cell type involved in maintenance of the normal tracheal epithelium. Secretory cells are greater in number, have a higher proliferative potential, and greater metabolic capability. Because of these traits they may be a critical cell at risk from damage by environmental agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号