首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs) are becoming invaluable data collection platforms for cetacean research. In particular, multi-rotors can be used to measure whales and investigate their behavior. Moreover, VTOL UAVs are increasingly accessible for recreational and commercial pilots, and close encounters with whales are widely documented. Unfortunately, quantitative assessments of potential disturbance for the targeted animals are not yet published and guidelines for responsible use of UAVs around cetaceans are still under development. We conducted VTOL UAV surveys on humpback whales in Vava'u, Kingdom of Tonga. Interestingly, whale behaviors such as socializing and nurturing were not detected by trained observers on board the research vessel, but were evident from the UAV. Nevertheless, no significant differences were detected in diving and swim parameters between absence and presence of UAV flying at 30 m altitude. These results suggest that VTOL UAVs can be a noninvasive tool to gather morphometric and behavioral data on baleen whales. However, further research is necessary to establish whether applications that require flight altitudes lower than 30 m and targeting different species may elicit behavioral responses.  相似文献   

2.
Underwater noise of whale-watching boats was recorded in the popular killer whale-watching region of southern British Columbia and northwestern Washington State. A software sound propagation and impact assessment model was applied to estimate zones around whale-watching boats where boat noise was audible to killer whales, where it interfered with their communication, where it caused behavioral avoidance, and where it possibly caused hearing loss. Boat source levels ranged from 145 to 169 dB re 1 μPa @ 1 m, increasing with speed. The noise of fast boats was modeled to be audible to killer whales over 16 km, to mask killer whale calls over 14 km, to elicit a behavioral response over 200 m, and to cause a temporary threshold shift (TTS) in hearing of 5 dB after 30–50 min within 450 m. For boats cruising at slow speeds, the predicted ranges were 1 km for audibility and masking, 50 m for behavioral responses, and 20 m for TTS. Superposed noise levels of a number of boats circulating around or following the whales were close to the critical level assumed to cause a permanent hearing loss over prolonged exposure. These data should be useful in developing whale-watching regulations. This study also gave lower estimates of killer whale call source levels of 105–124 dB re 1 μPa.  相似文献   

3.
ABSTRACT

Whales living within seismically active regions are subject to intense disturbances from strong sounds produced by earthquakes that can kill or injure individuals. Nishimura & Clark (1993) relate the possible effects of underwater earthquake noise levels in marine mammals, adducing that T-phase source signal level (10- to 30- Hz range) can exceed 200 dB re: 1 μPa at 1 m, for a magnitude 4–5 earthquake, sounds audible to fin whales which produce low frequency sounds of 16–20/25–44 Hz over 0.5–1s, typically of 183 dB re: 1 μPa at 1 m. Here we present the response of a fin whale to a 5.5 Richter scale earthquake that took place on 22 February 2005, in the Gulf of California. The whale covered 13 km in 26 min (mean speed = 30.2 km/h). We deduce that the sound heard by this whale might have triggered the costly energy expenditure of high speed swimming as a seismic-escape response. These observations support the hypothesis of Richardson et al. (1995) that cetaceans may flee from loud sounds before they are injured, when exposed to noise in excess of 140 dB re: 1 μPa 1 m.  相似文献   

4.
Beaked whales respond to simulated and actual navy sonar   总被引:1,自引:0,他引:1  
Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 μPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.  相似文献   

5.
Active acoustic techniques can be used to detect whales. The ability to detect whales from a moving vessel or stationary buoy could reduce conflicts between hazardous human activities and whales, enabling implementation of mitigation procedures. In order to identify acoustic targets correctly as whales, knowledge of whale target strength (TS) is required. Active acoustic detections of fin whales (Balaenoptera physalus) were made in the Norwegian Sea; acoustic data were collected using calibrated omnidirectional sonar, operating at a discrete frequency of 110 kHz. Three fin whales of similar size (estimated between 16 and 18 m total length) had an overall average TS for all insonified body aspects of ?11.4 dB [95% CI ?12.05, ?10.8] at 110 kHz, with a total spread of nearly 14 dB. As expected, the received signals were stronger when the fin whales were insonified at broadside (?5.6 dB). Individual fin whale TS varied by approximately 12 dB, probably due to variation in lung volume with breathing, and to dynamic swimming kinematics. Our TS values are consistent with values reported previously for other large whales. All data together pave the way for development of automated acoustic whale detection protocols that could aid whale conservation.  相似文献   

6.
Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population.  相似文献   

7.
Santa Catarina State, in southern Brazil, is an important breeding ground for the southern right whale and it is possible to record mother-calf pairs and unaccompanied adults that migrate to this coast to either give birth, mate, or socialize. From the geographical position of the sightings, spatial segregation was evaluated between mother-calf pairs and unaccompanied whales. Using GAM, we analyzed 15 years of aerial survey data from 2003 to 2018. The study area (780 km2) was divided into 500 × 500 m grid cells. Whale count per grid cell was modeled using a set of explanatory variables. The explanatory variables of latitude, coast distance, seabed, and maximum SST were selected for both classes. However, coast type was also selected for unaccompanied whales, while coast linearity and bathymetric slope were additionally selected for mother-calf pairs. The response curves fitted by models indicated a certain degree of spatial segregation, by which mother-calf pairs remained closer to the coast, where the curve peak is reached at 500 m from the coast, compared to unaccompanied whales where the curve peaked near 1,000 m from the coast. Also, unaccompanied whales more frequently appeared in the southern boundaries of the study area, at latitudes south from 28.4°S.  相似文献   

8.
Shore-based theodolite tracking of eastern gray whale (Eschrichtius robustus) movements was conducted to test for potential whale responses to a high-frequency sonar system. Southbound migrating whales were observed from two California shore observation stations as the whales swam past the source vessel that was moored in their migration path. The sonar transducer was deployed from the vessel during all observations, broadcasting 21–25 kHz sweeps for half of each day, the other half remaining silent. The order of control and experimental periods was randomized. No readily apparent response to sonar transmissions was observed in the field or in the visual data. Statistical analysis of tracking data indicates that, compared to control data, gray whales deflected inshore at ranges of 1–2 km from the vessel during sonar transmissions at a received sound pressure level of approximately 148 dB re 1 μPa2 (134 dB re 1 μPa2s). These data suggest that the functional hearing sensitivity of gray whales extends to at least 21 kHz.  相似文献   

9.
This study assesses effects of airgun sounds on bowhead calling behavior during the autumn migration. In August–October 2007, 35 directional acoustic recorders (DASARs) were deployed at five sites in the Alaskan Beaufort Sea. Location estimates were obtained for >137,500 individual calls; a subsample of locations with high detection probability was used in the analyses. Call localization rates (CLRs) were compared before, during, and after periods of airgun use between sites near seismic activities (median distance 41–45 km) and sites relatively distant from seismic activities (median distance >104 km). At the onset of airgun use, CLRs dropped significantly at sites near the airguns, where median received levels from airgun pulses (SPL) were 116–129 dB re 1 μPa (10–450 Hz). CLRs remained unchanged at sites distant from the airguns, where median received levels were 99–108 dB re 1 μPa. This drop could result from a cessation of calling, deflection of whales around seismic activities, or both combined, but call locations alone were insufficient to differentiate between these possibilities. Reverberation from airgun pulses could have masked a small number of calls near the airguns, but even if masking did take place, the analysis results remain unchanged.  相似文献   

10.
The vulnerability of beaked whales (Family: Ziphiidae) to intense sound exposure has led to interest in their behavioral responses to mid-frequency active sonar (MFAS, 3–8 kHz). Here we present satellite-transmitting tag movement and dive behavior records from Blainville's beaked whales (Mesoplodon densirostris) tagged in advance of naval sonar exercises at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas. This represents one of the largest samples of beaked whales individually tracked during sonar operations (n = 7). The majority of individuals (five of seven) were displaced 28–68 km after the onset of sonar exposure and returned to the AUTEC range 2–4 days after exercises ended. Modeled sound pressure received levels were available during the tracking of four individuals and three of those individuals showed declines from initial maxima of 145–172 dB re 1 μPa to maxima of 70–150 dB re 1 μPa following displacements. Dive behavior data from tags showed a continuation of deep diving activity consistent with foraging during MFAS exposure periods, but also suggested reductions in time spent on deep dives during initial exposure periods. These data provide new insights into behavioral responses to MFAS and have important implications for modeling the population consequences of disturbance.  相似文献   

11.
Baleen whales (Mysticeti) communicate using low-frequency acoustic signals. These long-wavelength sounds can be detected over hundreds of kilometres, potentially allowing contact over large distances. Low-frequency noise from large ships (20-200 Hz) overlaps acoustic signals used by baleen whales, and increased levels of underwater noise have been documented in areas with high shipping traffic. Reported responses of whales to increased noise include: habitat displacement, behavioural changes and alterations in the intensity, frequency and intervals of calls. However, it has been unclear whether exposure to noise results in physiological responses that may lead to significant consequences for individuals or populations. Here, we show that reduced ship traffic in the Bay of Fundy, Canada, following the events of 11 September 2001, resulted in a 6 dB decrease in underwater noise with a significant reduction below 150 Hz. This noise reduction was associated with decreased baseline levels of stress-related faecal hormone metabolites (glucocorticoids) in North Atlantic right whales (Eubalaena glacialis). This is the first evidence that exposure to low-frequency ship noise may be associated with chronic stress in whales, and has implications for all baleen whales in heavy ship traffic areas, and for recovery of this endangered right whale population.  相似文献   

12.
Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier''s beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.  相似文献   

13.
Humpback whales (Megaptera novaeangliae) exhibit a variety of foraging behaviours, but neither they nor any baleen whale are known to produce broadband clicks in association with feeding, as do many odontocetes. We recorded underwater behaviour of humpback whales in a northwest Atlantic feeding area using suction-cup attached, multi-sensor, acoustic tags (DTAGs). Here we describe the first recordings of click production associated with underwater lunges from baleen whales. Recordings of over 34000 'megapclicks' from two whales indicated relatively low received levels at the tag (between 143 and 154dB re 1 microPa pp), most energy below 2kHz, and interclick intervals often decreasing towards the end of click trains to form a buzz. All clicks were recorded during night-time hours. Sharp body rolls also occurred at the end of click bouts containing buzzes, suggesting feeding events. This acoustic behaviour seems to form part of a night-time feeding tactic for humpbacks and also expands the known acoustic repertoire of baleen whales in general.  相似文献   

14.
There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.  相似文献   

15.
The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.  相似文献   

16.
In proximity to seismic operations, bowhead whales (Balaena mysticetus) decrease their calling rates. Here, we investigate the transition from normal calling behavior to decreased calling and identify two threshold levels of received sound from airgun pulses at which calling behavior changes. Data were collected in August–October 2007–2010, during the westward autumn migration in the Alaskan Beaufort Sea. Up to 40 directional acoustic recorders (DASARs) were deployed at five sites offshore of the Alaskan North Slope. Using triangulation, whale calls localized within 2 km of each DASAR were identified and tallied every 10 minutes each season, so that the detected call rate could be interpreted as the actual call production rate. Moreover, airgun pulses were identified on each DASAR, analyzed, and a cumulative sound exposure level was computed for each 10-min period each season (CSEL10-min). A Poisson regression model was used to examine the relationship between the received CSEL10-min from airguns and the number of detected bowhead calls. Calling rates increased as soon as airgun pulses were detectable, compared to calling rates in the absence of airgun pulses. After the initial increase, calling rates leveled off at a received CSEL10-min of ~94 dB re 1 μPa2-s (the lower threshold). In contrast, once CSEL10-min exceeded ~127 dB re 1 μPa2-s (the upper threshold), whale calling rates began decreasing, and when CSEL10-min values were above ~160 dB re 1 μPa2-s, the whales were virtually silent.  相似文献   

17.
North Atlantic right whales, Eubalaena glacialis, remain endangered, primarily due to excessive anthropogenic mortality. Current management protocols in US waters are triggered by identifying the presence of at least one right whale in a management area. We assessed whether acoustic detection of right whale contact calls can work as an alternative to visual aerial surveys for establishing their presence. Aerial survey and acoustic monitoring were conducted in Cape Cod Bay, Massachusetts, in 2001–2005 and used to evaluate and compare right whale detections. Over the 58 d with simultaneous aerial and acoustic coverage, aerial surveys saw whales on approximately two-thirds of the days during which acoustic monitoring heard whales. There was no strong relationship between numbers of whales seen during aerial surveys and numbers of contact calls detected on survey days. Results indicate acoustic monitoring is a more reliable mechanism than aerial survey for detecting right whales. Because simple detection is sufficient to trigger current management protocols, continuous, autonomous acoustic monitoring provides information of immediate management utility more reliably than aerial surveillance. Aerial surveys are still required to provide data for estimating population parameters and for visually assessing the frequency and severity of injuries from shipping and fishing and detecting injured and entangled right whales.  相似文献   

18.
North Atlantic right whales ( Eubalaena glacialis ) are known to spend the majority of the year between the Great South Channel southeast of Cape Cod, and the Nova Scotian shelf. We examined sightings of right whales on and around Jeffreys Ledge, a 54-km-long glacial deposit off the coast of northern Massachusetts, New Hampshire, and Maine. Sightings on Jeffreys Ledge were extracted from three data sets: (1) a systematic survey of the entire northeastern continental shelf between 1979 and 1982, (2) whale-watch and research-cruise sighting data from 1984 to 1997, and (3) a collaborative database of sightings collected by organizations conducting right whale research and all other available sources. Each database supported two seasonal sighting peaks. During summer (especially July and August) sightings were primarily of mother-calf pairs. Several cow-calf pairs were seen over several days to weeks. Several females were resighted in more than one year, but only when calves were present. During October, November, and December, sightings included all age classes, surface-feeding behavior was frequently observed, and some animals were resighted over several weeks. Given the relatively reduced sighting effort during fall, this number of sightings is surprising. During the 20 yr of observations, 52 of 374 photo-identified North Atlantic right whales (13.9%) were seen at least once on Jeffreys Ledge. We suggest that Jeffreys Ledge may be a more important right whale habitat than previously believed, and that it may play an important role in annual movements and distribution of this population.  相似文献   

19.
Toothed whales use intense ultrasonic clicks to echolocate prey and it has been hypothesized that they also acoustically debilitate their prey with these intense sound pulses to facilitate capture. Cephalopods are an important food source for toothed whales, and there has probably been an evolutionary selection pressure on cephalopods to develop a mechanism for detecting and evading sound-emitting toothed whale predators. Ultrasonic detection has evolved in some insects to avoid echolocating bats, and it can be hypothesized that cephalopods might have evolved similar ultrasound detection as an anti-predation measure. We test this hypothesis in the squid Loligo pealeii in a playback experiment using intense echolocation clicks from two squid-eating toothed whale species. Twelve squid were exposed to clicks at two repetition rates (16 and 125 clicks per second) with received sound pressure levels of 199-226 dB re1 microPa (pp) mimicking the sound exposure from an echolocating toothed whale as it approaches and captures prey. We demonstrate that intense ultrasonic clicks do not elicit any detectable anti-predator behaviour in L. pealeii and that clicks with received levels up to 226 dB re1 microPa (pp) do not acoustically debilitate this cephalopod species.  相似文献   

20.
In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis) occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement – with photo-identification of individual whales – were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001–2007), 109 tracking periods or “follows” were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two – and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn), with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment). At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h) that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to conservation biology, predictive modeling, and management. However, while we often search for predictions, patterns, and means, the message here is also about variability and the behavioral characteristics of individual whales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号