首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level and distribution of genetic diversity can be influenced by species life history traits and demographic factors, including perturbations that might produce population bottlenecks. Deforestation and forest fragmentation are common sources of population disturbance in contemporary populations of forest ecosystems. Although the genetic effects of forest fragmentation and deforestation have been examined by assessing levels of genetic variation in forest fragments that remain after logging, few considerations have been made of the populations that re-colonize once-cleared areas. Here we examine the effects of human-mediated population bottlenecks on the level and distribution of genetic diversity in natural populations of the long-lived forest tree species, Acer saccharum (sugar maple). We compared genetic variation and structure for populations of sugar maple found within old-growth forested area and in area that has re-colonized since logging. In this study the percent polymorphic loci and allelic richness estimates were reduced in the logged populations compared to old-growth populations. Jackknifed estimates of population genetic differentiation showed significantly higher differentiation among logged populations, with this result being consistently seen when individuals within populations were grouped according to diameter at breast height. The result of decreased genetic variation and higher levels of genetic structure among logged populations suggests that even one extensive bout of logging can alter the level and distribution of genetic variation in this forest tree species.  相似文献   

2.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. In the last century, guppies, Poecilia reticulata, repeatedly invaded streams in Australia and elsewhere. Quantitative genetic studies of one Australian guppy population have demonstrated high additive genetic variation for autosomal and Y-linked morphological traits. The combination of colonization success, high heritability of morphological traits, and the possibility of multiple introductions to Australia raised the prediction that neutral genetic diversity is high in introduced populations of guppies. In this study we examine genetic diversity at nine microsatellite and one mitochondrial locus for seven Australian populations. We used mtDNA haplotypes from the natural range of guppies and from domesticated varieties to identify source populations. There were a minimum of two introductions, but there was no haplotype diversity within Australian populations, suggesting a founder effect. This was supported by microsatellite markers, as allelic diversity and heterozygosity were severely reduced compared to one wild source population, and evidence of recent bottlenecks was found. Between Australian populations little differentiation of microsatellite allele frequencies was detected, suggesting that population admixture has occurred historically, perhaps due to male-biased gene flow followed by bottlenecks. Thus success of invasion of Australia and high additive genetic variance in Australian guppies are not associated with high levels of diversity at molecular loci. This finding is consistent with the release of additive genetic variation by dominance and epistasis following inbreeding, and with disruptive and negative frequency-dependent selection on fitness traits.  相似文献   

3.
Evolutionary and conservation biologists often use molecular markers to evaluate whether populations have experienced demographic bottlenecks that resulted in a loss of genetic variation. We evaluated the utility of microsatellites for detection of recent, severe bottlenecks and compared the amounts of genetic diversity lost in bottlenecks of different sizes. In experimental mesocosms, we established replicate populations by releasing 1, 2, 4 or 8 pairs of the western mosquitofish, Gambusia affinis (Poeciliidae). Using eight polymorphic microsatellite loci, we quantified seven indices of genetic diversity or change that have been used to assess the effects of demographic bottlenecks on populations. We compared indices for the experimentally bottlenecked populations to those for the source population and examined differences between populations established with different numbers of founders. Direct count heterozygosity and the proportion of polymorphic loci were not very sensitive to genetic changes that resulted from the experimental bottlenecks. Heterozygosity excess and expected heterozygosity were useful to varying degrees in the detection of bottlenecks. Allelic diversity and temporal variance in allele frequencies were most sensitive to genetic changes that resulted from the bottlenecks, and the temporal variance method was slightly more correlated with bottleneck size than was allelic diversity. Based on comparisons to a previous study with allozymes, heterozygosity, temporal variance in allele frequencies and allelic diversity, but not proportion of polymorphic loci, appear to be more sensitive to demographic bottlenecks when quantified using microsatellites. We found that analysis of eight highly polymorphic loci was sufficient to detect a recent demographic bottleneck and to obtain an estimate of the magnitude of bottleneck severity.  相似文献   

4.
Understanding the relative role of different evolutionary forces in shaping the level and distribution of functional genetic diversity among natural populations is a key issue in evolutionary and conservation biology. To do so accurately genetic data must be analysed in conjunction with an unambiguous understanding of the historical processes that have acted upon the populations. Here, we focused on diversity at toll‐like receptor (TLR) loci, which play a key role in the vertebrate innate immune system and, therefore, are expected to be under pathogen‐mediated selection. We assessed TLR variation within and among 13 island populations (grouped into three archipelagos) of Berthelot's pipit, Anthus berthelotii, for which detailed population history has previously been ascertained. We also compared the variation observed with that found in its widespread sister species, the tawny pipit, Anthus campestris. We found strong evidence for positive selection at specific codons in TLR1LA, TLR3 and TLR4. Despite this, we found that at the allele frequency level, demographic history has played the major role in shaping patterns of TLR variation in Berthelot's pipit. Levels of diversity and differentiation within and across archipelagos at all TLR loci corresponded very closely with neutral microsatellite variation and with the severity of the bottlenecks that occurred during colonization. Our study shows that despite the importance of TLRs in combating pathogens, demography can be the main driver of immune gene variation within and across populations, resulting in patterns of functional variation that can persist over evolutionary timescales.  相似文献   

5.
Individuals within a species vary in their responses to a wide range of stimuli, partly as a result of differences in their genetic makeup. Relatively little is known about the genetic and neuronal mechanisms contributing to diversity of behavior in natural populations. By studying intraspecies variation in innate avoidance behavior to thermal stimuli in the nematode Caenorhabditis elegans, we uncovered genetic principles of how different components of a behavioral response can be altered in nature to generate behavioral diversity. Using a thermal pulse assay, we uncovered heritable variation in responses to a transient temperature increase. Quantitative trait locus mapping revealed that separate components of this response were controlled by distinct genomic loci. The loci we identified contributed to variation in components of thermal pulse avoidance behavior in an additive fashion. Our results show that the escape behavior induced by thermal stimuli is composed of simpler behavioral components that are influenced by at least six distinct genetic loci. The loci that decouple components of the escape behavior reveal a genetic system that allows independent modification of behavioral parameters. Our work sets the foundation for future studies of evolution of innate behaviors at the molecular and neuronal level.  相似文献   

6.
Phase and antigenic variation is used by several bacterial species to generate intra-population diversity that increases bacterial fitness and is important in niche adaptation, or to escape host defences. By this adaptive process, bacteria undergo frequent and usually reversible phenotypic changes resulting from genetic or epigenetic alterations at specific genetic loci. Phase variation or phenotypic switch allows the expression of a given phenotype to be switched ON or OFF. Antigenic variation refers to the expression of a number of alternative forms of an antigen on the cell surface, and at a molecular level, shares common features with phase variation mechanisms. This review will focus on phase and antigenic variation mechanisms implying genome modifications, with an emphasis on the diversity of phenotypes regulated by these mechanisms, and the ecological relevance of variant appearance within a given population.  相似文献   

7.
利用 RAPD技术分析了分布于浙江省天台山 3个不同海拔高度的天然大血藤群体的遗传多样性、遗传分化以及与环境因子的相关性。 13种随机引物在 3 6株个体中共检测到 88个可重复的位点 ,其中多态位点 74个 ,总多态位点百分率为84.0 9% ,大血藤具有丰富的遗传多样性。 Shannon信息指数显示的遗传多样性以海拔 950 m的群体为最高 ,其次是海拔 73 0 m的群体 ,最低的是海拔 52 0 m的群体 ;群体内的遗传多样性占总遗传多样性的 43 .68% ,群体间的遗传多样性占 56.3 2 %。 Nei指数估计大血藤群体间的遗传分化系数为 0 .540 6,大血藤群体间的基因流很低。大血藤海拔 73 0 m群体与海拔 52 0 m群体的遗传相似度较高 ,海拔 950 m群体与其它两群体的遗传相似度较低。大血藤群体内的遗传多样性与土壤总氮呈极显著的正相关。  相似文献   

8.
To assess the level of genetic variation in a threatened black howler monkey (Alouatta pigra) population, we examined 36 allozyme loci and restriction fragment profiles of mitochondrial DNA (mtDNA). Mean heterozygosity at allozyme loci was only 0.021 and 5.6 percent of the loci were polymorphic. Analyses of mtDNA also revealed low genetic diversity compared with other primates. F-statistics revealed no significant genetic heterogeneity among troops within the Bermudian Landing preserve, but did indicate a deficiency of heterozygotes at one of the two loci. We explore several explanations for this result, which is unexpected in a socially structured primate. Low genetic diversity in this population may reflect its history of demographic bottlenecks. Am. J. Phys. Anthropol. 102:329–336, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

10.
Genetic variation in populations, both natural and restored, is usually considered crucial for response to short‐term environmental stresses and for long‐term evolutionary change. To have the best chance of successful long‐term survival, restored populations should reflect the extant variation found in remnants, but restored sites may suffer from genetic bottlenecks as a result of founder effects. Kankakee Sands is a large‐scale restoration being conducted by The Nature Conservancy (TNC) in northwestern Indiana. Our goal was to test for loss of genetic variation in restored plant populations by comparing them with TNC’s seed source nursery and with local remnant populations that were the source of nursery seed and of the first few restored sites. Allozyme analysis of Baptisia leucantha, Asclepias incarnata, Coreopsis tripteris, and Zizia aurea showed low levels of allozyme diversity within all species and reductions in polymorphism, alleles per locus, and expected heterozygosity between remnants and restorations for all species except A. incarnata. Almost all lost alleles were rare; restored populations contained almost 90% of alleles at polymorphic loci that occurred in remnants at frequencies greater than 1%. Allele frequencies for most loci did not differ between remnants and restored sites. Most species showed significant allele frequency differentiation among remnant populations and among restored sites. Our results indicate that seed collection techniques used at Kankakee Sands captured the great majority of allozyme variation present in seed source remnant populations.  相似文献   

11.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

12.
White-tailed deer (Odocoileus virginianus) were nearly extirpated from the southeastern USA during the late 19th and early 20th centuries. Recovery programmes, including protection of remnant native stocks and transplants from other parts of the species' range, were initiated in the early 1900's. The recovery programmes were highly successful and deer are presently numerous and continuously distributed throughout the southeastern USA. However, the impact of the recovery programmes on the present genetic structure of white-tailed deer remains to be thoroughly investigated. We used 17 microsatellite DNA loci to assess genetic differentiation and diversity for 543 white-tailed deer representing 16 populations in Mississippi and three extra-state reference populations. There was significant genetic differentiation among all populations and the majority of genetic variation (> or = 93%) was contained within populations. Patterns of genetic structure, genetic similarity and isolation by distance within Mississippi were not concordant with geographical proximity of populations or subspecies delineations. We detected evidence of past genetic bottlenecks in nine of the 19 populations examined. However, despite experiencing genetic bottlenecks or founder events, allelic diversity and heterozygosity were uniformly high in all populations. These exceeded reported values for other cervid species that experienced similar population declines within the past century. The recovery programme was successful in that deer were restored to their former range while maintaining high and uniform genetic variability. Our results seem to confirm the importance of rapid population expansion and habitat continuity in retaining genetic variation in restored populations. However, the use of diverse transplant stocks and the varied demographic histories of populations resulted in fine-scale genetic structuring.  相似文献   

13.
An extraordinary diversity of epiphytic lichens is found in the boreal rainforest of central Norway, the highest-latitude rainforest in the world. These rainforest relicts are located in ravine systems, and clear cutting has increased the distance between remaining patches. We hypothesized that the relatively small lichen populations in the remaining forest stands have suffered a depletion of genetic diversity through bottlenecks and founder events. To test this hypothesis, we assessed genetic diversity and structure in the populations of the tripartite lichen Lobaria pulmonaria using eight SSR loci. We sampled thalli growing on Picea abies branches and propagules deposited in snow at three localities. Contrary to expectations, we found high genetic diversity in lichen and snow samples, and high effective sizes of the studied populations. Also, limited genetic differentiation between populations, high historical migration rates, and a high proportion of first generation immigrants were estimated, implying high connectivity across distances <30km. Almost all genetic variation was attributed to variation within sites; spatial genetic structures within populations were absent or appeared on small scales (5-10m). The high genetic diversity in the remaining old boreal rainforests shows that even relict forest patches might be suitable for conservation of genetic diversity.  相似文献   

14.
RAPD markers were used to measure the genetic diversity of 119 individuals of Ixodes ricinus collected from Lithuania and Norway. The samples were analysed within and also between the populations. We analysed 74 loci in each of 6 populations. Our results show high levels of diversity within the populations. The percentage of polymorphic loci of the six analysed populations: Birzai, Vilnius, Kretinga, Tjore, Kjosvik and Odderoya were 68.9%, 58.1%, 78.38%, 62.2%, 44.6% and 68.9%, respectively. The percentage of polymorphic loci in the Lithuanian populations was 93.2%, and in the Norwegian populations 81.08%. The genetic distance ranged from 0.019 to 0.079 within Norwegian populations and from 0.005 to 0.0967 within Lithuanian populations and between the countries from 0.022 to 0.146. The genetic variation of I. ricinus among Norwegian populations was lower than among Lithuanian populations. The highest part of genetic variation in I. ricinus ticks depends on variation within Kretinga (Lithuania) and Odderoya (Norway) populations situated in coastal areas where many migratory and sea birds are aggregated.  相似文献   

15.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

16.
Loss of genetic variation in small, isolated populations is commonly observed at neutral or nearly neutral loci. In this study, the loss of genetic variation was assessed in island populations for a locus of major histocompatibility complex (Mhc), a locus shown to be under the influence of balancing selection. A total of 36 alleles was found at the second exon of RT1.Ba in 14 island and two mainland populations of Rattus fuscipes greyii. Despite this high overall diversity, a substantial lack of variation was observed in the small island populations, with 13 islands supporting only one to two alleles. Two populations, Waldegrave and Williams Islands, showed moderately high levels of heterozygosity (52-56%) which were greater than expected under neutrality, suggesting the action of balancing selection. However, congruence between the level of variation at this Mhc locus and in previous allozyme electrophoresis and mitochondrial DNA studies highlights the dominant influence of genetic drift and population factors, such as bottlenecks and structuring in the founding population, in the loss of genetic variation in these small, isolated populations.  相似文献   

17.
Species introductions provide a rare opportunity to study rapid evolutionary and genetic processes in natural systems, often under novel environmental pressures. Few empirical studies have been able to characterize genetic founder effects associated with demographic bottlenecks at the earliest stages of species introductions. This study utilizes prior mitochondrial DNA information which identifies the putative source population for a recently established ( c . 7 years between import and sampling) species introduction. We investigated the evidence for a founder effect in a highly successful introduction of a Puerto Rican Anolis species that has established itself on Dominica to the localized exclusion of the native, endemic anole. Five highly polymorphic microsatellite loci were used to explore the partitioning of genetic diversity within and between native source, native nonsource, and introduced populations of Anolis cristatellus . Group comparisons reveal significantly lower allelic richness and expected heterozygosity in introduced populations compared to native populations; however, tests for heterozygosity excess relative to allelic richness failed to provide consistent evidence for a founder effect within introduced populations. Significant levels of within-population genetic variation were present in both native and introduced populations. We suggest that aspects of the reproductive ecology of Anolis (high fecundity, sperm storage and multiple paternity) offer an important mechanism by which genetic variation may be maintained following demographic bottlenecks and founder events in some squamate taxa.  相似文献   

18.
云南金钱槭形态变异与遗传变异的相关性研究   总被引:14,自引:1,他引:13  
对我国特有珍稀濒危保护植物云南金钱槭的形态变异水平、遗传变异模式以及两者之间的相关性进行了研究。形态学性状分析结果表明 :各居群形态性状变异系数的平均值从大到小排列为 :文山居群 (WSh)、屏边居群 (PB)、黑龙潭居群 (HL T)、蒙自居群 (MZ) ;文山居群与屏边、黑龙潭、蒙自居群间已产生显著或极显著水平的形态差异 ,而后三者间的差异未达显著水平。RAPD分析检测到 10 3个位点 ,其中多态位点 84个 ,云南金钱槭物种水平的多态位点比率为 81.5 5 % ,与其它珍稀濒危植物相比该种的遗传多样性水平不低。 AMOVA和 N ei基因多样性指数分析显示 ,尽管大部分遗传变异仍存在于居群内 (分别为5 7.86 %、5 7.33% ) ,但居群间的遗传变异已达较高水平 (分别为 4 2 .14 %、4 2 .6 7% )。相关分析结果显示 ,云南金钱槭的形态变异与海拔、土壤有机质等生态因子有着显著或极显著水平的相关性 ,但与遗传变异的相关性未达显著水平 ,说明云南金钱槭的形态变异虽然具有一定的遗传基础 ,但可塑性及环境压力对形态变异的产生作用更大一些。基于形态性状和 RAPD数据的聚类分析则进一步说明 ,云南金钱槭的形态变异受到环境因子的强烈影响而与遗传背景的关系不显著  相似文献   

19.
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite‐mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter‐ and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.  相似文献   

20.
We describe 11 microsatellite loci isolated from the Banded Wren (Thryothorus pleurostictus), a Neotropical species for which understanding the genetic mating system is important for testing questions about the species' unusual vocal behavior. Screening of these loci revealed extremely low allelic variation in a Costa Rican population. Allelic variation at these and other previously developed loci is substantially higher in two other wren species, the southern house wren (Troglodytes aedon bonariae) and rufous-and-white wren (Thryothorus rufalbus), suggesting that the low allelic diversity in the banded wren results from demographic bottlenecks rather than locus-sampling artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号