首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Determining the effect of perennial energy crop (PEC) cultivation on soil organic carbon (SOC) in marginal land soil is vital for carbon neutrality and bioeconomy development. However, a comprehensive and systematic evaluation of the response of SOC content to different PECs and its underlying drivers is still lacking. We used soil data collected from infertile red topsoil (0–20 cm) after 10 years of cultivation with Miscanthus (MS), Panicum virgatum (SG), and Saccharum arundinaceum (SA) to explore the changes in SOC stock induced by PEC. The roles of physical, chemical, and microbiological factors driving the increase in the SOC stock were investigated. Results revealed that SA and MS enhanced SOC stock by 87.97% and 27.52% relative to the uncultivated control. Conversely, PEC increased the percentage of soil mega-aggregates, geometric mean diameters, soil chelate iron (Fe), and aluminum (Al) oxides, and reduced soil acidity for the infertile red soils. In addition, fungal richness and diversity for PEC soils were enhanced compared to the unplanted soil. It is possible that PEC cultivation reduced the relative abundance of copiotrophic fungi but increased the relative abundance of oligotrophic fungi. Furthermore, variance partitioning analysis revealed that chemical and microbiological factors accounted for 80.54% of the total variation for the SOC stock. The partial least squares path model showed that PEC cultivation enhanced soil carbon (C) stock via soil deacidification and increased soil bacterial function. In conclusion, this study confirms the SOC sequestration potential of PEC cultivation in marginal land and the underlying mechanism driving SOC stock. The main positive factors controlling soil C sequestration included “pH,” while the negative factors were “bacterial community,” “fungal community,” and “bacterial function.” Our research may help encourage and support decision-makers of wasted marginal land conversion to PEC cultivation.  相似文献   

2.
耕作对黄绵土(Calclaric Cambisols,FAO)、灰褐土(Haplic Greyxems,FAO)和典型褐灰钙土(Orthic Brown Chernozem)的土壤有机碳(SOC)动态的影响存在明显差异,黄绵土在开垦5年内O~20cm土壤有机碳损失了77%,损失速率为2.15t·hm^-2·yr^-1,其主要原因为水蚀和耕作侵蚀,灰褐土在开垦后的42年里耕层土壤的有机碳损失了70%,损失速率为0.96~1.06t·hm^-2·yr^-1,主要为水蚀和有机碳的矿化分解,1960以后开垦的典型褐灰钙土0~20cm耕层土壤有机碳损失了11%,损失速率为0.17t·hm^-2·yr^-1。1920年开垦的典型褐灰钙土有机碳损失了44%,损失速率为0.45t·hm^-2·yr^-1,造成这一差异的主要原因是耕作和轮作体制的改善有效地阻止了风蚀的危害,并增加了进入土壤系统的有机物的量,3种土壤轻组有机碳(LFOC)的变化趋势与总有机碳的变化趋势相似:黄绵土和灰褐土在相应的时间内LFOC损失了73%和90%,1920年和1960年开垦的典型褐灰钙土LFOC分别损失了74%和70%,3种土壤间LFOC和HFOC的分配比例不同也可能是造成黄绵土和灰褐土有机碳下降快的原因。  相似文献   

3.
Soil carbon is a large component of the global carbon cycle and its management can significantly affect the atmospheric CO2 concentration. An important management issue is the extent of soil carbon (C) release when forest is converted to agricultural land. We reviewed the literature to assess changes in soil C upon conversion of forests to agricultural land. Analyses are confounded by changes in soil bulk density upon land‐use change, with agricultural soils on average having 13% higher bulk density. Consistent with earlier reviews, we found that conversion of forest to cultivated land led to an average loss of approximately 30% of soil C. When we restricted our analysis to studies that had used appropriate corrections for changes in bulk density, soil C loss was 22%. When, from all the studies compiled, we considered only studies reporting both soil C and nitrogen (N), average losses of C and N were 24% and 15%, respectively, hence showing a decrease in the average C : N ratio. The magnitude of these changes in the C : N ratio did not correlate with either C or N changes. When considering the transition from forest to pasture, there was no significant change in either soil C or N, even though reported changes in soil C ranged from ?50% to +160%. Among studies that reported changes in soil N as well as soil C, C : N ratios both increased and decreased, with trends depending on changes in system N. Systems with increasing soil N generally had decreased C : N ratios, whereas systems with decreasing soil N had increased C : N ratios. Our survey confirmed earlier findings that conversion of forest to cropland generally leads to a loss of soil carbon, although the magnitude of change might have been inflated in many studies by the confounding influence of bulk‐density changes. In contrast, conversion of forest to uncultivated grazing land did not, on average, lead to loss of soil carbon, although individual sites may lose or gain soil C, depending on specific circumstances, such as application of fertiliser or retention or removal of plant residues.  相似文献   

4.
Land use induced changes of organic carbon storage in soils of China   总被引:29,自引:0,他引:29  
Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that ~ 57% of the cultivated soil subgroups ( ~ 31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non‐irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to ~ 77.4 Pg (1015 g) and ~ 8.8 kg C m?2, respectively, compared to a SOC storage of ~ 70.3 Pg and an average SOC density of ~ 8.0 kg C m?2 under the present‐day conditions. This suggests a loss of ~ 7.1 Pg SOC and a decrease of ~ 0.8 kg C m?2 SOC density due to increasing human activities, in which the loss in organic horizons has contributed to ~ 77%. This total loss of SOC in China induced by land use represents ~ 9.5% of the world's SOC decrease. This amount is equivalent to ~ 3.5 ppmv of the atmospheric CO2 increase. Since ~ 78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of ~ 50% of the lost SOC during the next 20–50 years, the soils in China would absorb ~ 3.5 Pg of carbon from the atmosphere.  相似文献   

5.
黄彩变  曾凡江  雷加强  刘镇  安桂香 《生态学报》2011,31(18):5113-5120
以新疆策勒绿洲近百年来不同开垦年限农田为研究对象,采用空间序列换算时间序列的方法,研究绿洲农田开垦过程中土壤有机碳和全氮密度、碳氮比(C/N)及速效氮含量的垂直变化特征,并探讨了农田土壤碳氮变化与作物产量的关系。结果表明:荒漠土壤开垦后,显著增加了表层土壤(0-20 cm)有机碳和全氮密度,随开垦年限延长对深层土壤(40-200 cm)有机碳密度也有一定的影响,如在开垦30 a左右时下降了36.4%,但在100 a左右时则增加了52.0%。耕层土壤C/N随开垦年限延长而明显增加,深层土壤除100 a农田外其它均有不同程度下降;不同土层C/N与速效氮含量呈负相关关系,仅在开垦初期(0-10 a)达到显著水平。不同年限农田的玉米产量存在显著差异,且和有机碳及全氮密度(0-200 cm)均呈显著正相关;棉花除100和10 a农田产量差异较小外,在其它农田间均达显著水平,但和有机碳及全氮密度无明显相关性。由此可见,在现有投入条件下,提高土壤碳氮累积量对增加玉米产量仍有十分重要作用,但对棉花产量的影响不明显。  相似文献   

6.
The effect of climate and cultivation on soil organic C and N   总被引:6,自引:0,他引:6  
Here, we investigate the response of soil organic carbon (SOC) and soil organic nitrogen (SON) to cultivation within two different climatic regimes by comparing large soil data sets from India and the Great Plains. Multiple regression models for both regions show that SOC and SON, as well as C/N ratios, increase with decreasing temperatures and increasing precipitation, trends also noted in soil data organized by Holdridge life zones. The calculated difference between natural and cultivated soils in India revealed that the greatest absolute SOC and SON losses occurred in regions of low temperatures and high precipitation, while the C/N ratio decreased during cultivation only with decreasing temperature. In India, the fractional loss of SOC relative to undisturbed soils increases with decreasing temperature whereas, in the Great Plains, it increases with increasing precipitation. Also, the fractional loss of SOC increased in India with increasing amounts of original C, whereas no relationship between fractional loss and original C was noted for the Great Plains. The differential response of each region to cultivation is hypothesized to be due to differences in both climate and management practices (crop cycles, fertilization). These findings suggest that estimates of soil C loss due to cultivation should be based on an array of factors, and that it is unlikely that a constant relative C loss occurs in any region.  相似文献   

7.
Uncertainty was quantified for an inventory estimating change in soil organic carbon (SOC) storage resulting from modifications in land use and management across US agricultural lands between 1982 and 1997. This inventory was conducted using a modified version of a carbon (C) accounting method developed by the Intergovernmental Panel on Climate Change (IPCC). Probability density functions (PDFs) were derived for each input to the IPCC model, including reference SOC stocks, land use/management activity data, and management factors. Change in C storage was estimated using a Monte‐Carlo approach with 50 000 iterations, by randomly selecting values from the PDFs after accounting for dependencies in the model inputs. Over the inventory period, mineral soils had a net gain of 10.8 Tg C yr?1, with a 95% confidence interval ranging from 6.5 to 15.3 Tg C yr?1. Most of this gain was due to setting‐aside lands in the Conservation Reserve Program. In contrast, managed organic soils lost 9.4 Tg C yr?1, with a 95% confidence interval ranging from 6.4 to 13.3 Tg C yr?1. Combining these gains and losses in SOC, US agricultural soils accrued 1.3 Tg C yr?1 due to land use and management change, with a 95% confidence interval ranging from a loss of 4.4 Tg C yr?1 to a gain of 6.9 Tg C yr?1. Most of the uncertainty was attributed to management factors for tillage, land use change between cultivated and uncultivated conditions, and C loss rates from managed organic soils. Based on the uncertainty, we are not able to conclude with 95% confidence that change in US agricultural land use and management between 1982 and 1997 created a net C sink for atmospheric CO2.  相似文献   

8.
Effects of Grazing on Restoration of Southern Mixed Prairie Soils   总被引:6,自引:0,他引:6  
A comparative analysis of soils and vegetation from cultivated areas reseeded to native grasses and native prairies that have not been cultivated was conducted to evaluate restoration of southern mixed prairie of the Great Plains over the past 30 to 50 years. Restored sites were within large tracts of native prairie and part of long‐term grazing intensity treatments (heavy, moderate, and ungrazed), allowing evaluation of the effects of grazing intensity on prairie restoration. Our objective was to evaluate restored and native sites subjected to heavy and moderate grazing regimes to determine if soil nutrients from reseeded cultivated land recovered after 30 years of management similar to the surrounding prairie and to identify the interactive influence of different levels of grazing and history of cultivation on plant functional group composition and soils in mixed prairies. For this mixed prairie, soil nitrogen and soil carbon on previously cultivated sites was 30 to 40% lower than in uncultivated native prairies, indicating that soils from restored sites have not recovered over the past 30 to 50 years. In addition, it appears that grazing alters the extent of recovery of these grassland soils as indicated by the significant interaction between grazing intensity and cultivation history for soil nitrogen and soil carbon. Management of livestock grazing is likely a critical factor in determining the potential restoration of mixed prairies. Heavy grazing on restored prairies reduces the rate of soil nutrient and organic matter accumulation. These effects are largely due to changes in composition (reduced tallgrasses), reduced litter accumulation, and high cover of bare ground in heavily grazed restored prairies. However, it is evident from this study that regardless of grazing intensity, restoration of native prairie soils requires many decades and possibly external inputs to adequately restore organic matter, soil carbon, and soil nitrogen.  相似文献   

9.
A simulation model of soil carbon cycling was developed based on the data observed in a mid-temperate forest in Yoshiwa, Hiroshima Prefecture, Japan, and soil carbon cycling and carbon budget in a mature forest stand and following clear-cutting were calculated on a daily basis using daily air temperature and precipitation data. The seasonal change in the amount of the A0 layer was characterized by a decrease from spring to autumn due to rapid decomposition of litter, and recovery in late autumn due to a large litterfall input. There was little change in the amount of humus in mineral soil. These estimates coincides closely with those observed in the field. Most flow rates and the accumulation of soil carbon decreased very markedly just after clear-cutting. The A0 layer reached its minimum in 10 years, and recovered its loss within 50–60 years after cutting. A large loss of carbon was observed just after cutting, but the balance changed from negative to positive in 15 years after cutting. The total loss of soil carbon following cutting recovered within 30 years, and nearly the same amount of carbon as that stocked in the timber before harvesting accumulated 70–80 years after cutting. The calculation by the simulation model was made using the assumption that the increase in atmospheric CO2 promoted the primary production rate by 10% over the last three decades. The result suggests that about 8 t C ha-1 was sunk into soils of the mid-temperate forest over the same period. It indicates that forest soils may be one of the main sinks for atmospheric CO2.  相似文献   

10.
Topsoil organic carbon storage of China and its loss by cultivation   总被引:40,自引:0,他引:40  
Topsoil is very sensitive to human disturbance under the changing climate. Estimates of topsoil soil organic carbon (SOC) pool may be crucial for understanding soil C dynamics under human land uses and soil potential of mitigating the increasing atmospheric CO2 by soil C sequestration. China is a country with long history of cultivation. In this paper, we present an estimate of topsoil SOC pool and cultivation-induced pool reduction of China soils based upon the data of all the soil types identified in the 2nd national soil survey conducted during 1979–1982. The area of cultivated soils of China amounted to 138 × 106 ha while the uncultivated soils occupied 740 × 106 ha in 1980. Topsoil SOC density ranged from 0.77 to 1489 t Cha−1 in uncultivated soils and 3.52 to 591 t Cha−1 in cultivated soils with the average being 50 ± 47 t Cha−1 and 35 ± 32 t Cha−1, respectively. Geographically, the maximum mean topsoil SOC density was found in northeastern China, being of 70 ± 104 t Cha−1 for uncultivated soils and of 57 ± 54 t Cha−1 for cultivated soils, respectively. The lowest topsoil SOC density for uncultivated soils was found in East China, being of 38 ± 33 t Cha−1 and that for cultivated soils in North China, being of 30 ± 30 t Cha−1. There is still uncertainty in estimating the total topsoil SOC of uncultivated soils because a large portion of them was not surveyed during the 2nd Soil Survey. However, an estimate of total SOC for cultivated soils amounted to 5.1 Pg. On average, cultivation of China’s soils had induced a decrease of SOC density of 15 t Cha−1 giving rise to an overall pool reduction at 2 Pg. This is significantly smaller than the total SOC pool decline of 7 Pg due to cultivation of natural soils in China reported by Wu et al. (Glob. Change Biol. 2003, 9: 305–315), who made a pool estimation of whole soil profile assuming 1 m depth for all soils. As the mean topsoil SOC density of China was lower than the world average value given by Batjes (J. Soil Sci. 1996, 47: 151–163), China may be considered as a country with low SOC density and may have great potential for C sequestration under well defined management. However, the dynamics of topsoil C storage in China agricultural soils since 1980’s and the effects of modern agricultural developments on C dynamics need further study for elucidating the role of China agriculture in global climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号