首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Methanosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus. Overall, the clone libraries indicate a diversified methanogen community that uses H2/CO2, formate, acetate, and methylated substrates. Phylogenetic affiliations of mcrA and 16S rRNA clones with thermophilic and nonthermophilic cultured isolates indicate a mixed mesophilic and thermophilic methanogen community in the surficial Guaymas sediments.  相似文献   

2.
3.
In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae. Out of eighteen OTUs identified from mcrA gene library, fifteen clustered with order Methanobacteriales, two resemble with Methanomicrobiales and remaining one grouped with Methanosarcinales. These results revealed that Methanobrevibacter phylotype was predominantly present in Karan Fries crossbred cattle fed on high fibrous diet containing wheat straw. Compared to 16S rRNA gene, mcrA gene OTUs clustered in three orders providing better insights of rumen methanogens diversity in cattle.  相似文献   

4.
5.
Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.  相似文献   

6.
Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers.  相似文献   

7.
Methanogen communities were characterized in cattle dung of different ages by using a culture-independent approach. Community structures were determined by the phylogenetic analyses of methyl-coenzyme M reductase A (mcrA) clones of fresh, 8-month-old, and 24-month-old-dry dung samples. The clones in the mcrA libraries of fresh and 8-month old dung samples were identified as belonging to Methanomicrobiales, Methanobacteriales, and Methanosarcinales. However, clones in the library of 24-month-old dung were not affiliated to Methanomicrobiales. Anaerobic digestion of 2-month-old dung produced only 15% less methane compared to fresh dung which indicated the possibility of using dry dung to fuel the biogas plants in areas where unavailability of fresh dung hinders their continuous functioning. Our results first time showed the presence of viable methanogens in dry cattle dung stored for prolonged periods of time.  相似文献   

8.
The main goal of this work was to determine which methanogens were present during the anaerobic degradation of Microcystis biomass in the water columns of freshwater lakes. Simulation experiments were performed in which 30 ml Microcystis slurries were anaerobically incubated in 60 ml airtight bottles at three temperatures (15, 25, and 35 °C) for over 90 days. The production of CH4 was monitored, and the methanogenic community was analyzed by cloning and sequencing the mcrA genes in samples incubated at the three different temperatures. In total, four clusters were detected at different temperatures by phylogenetic analysis of mcrA genes; these included members of Methanomicrobiales, Methanobacteriaceae, and Methanosarcina. An apparent linkage between temperature and phylogeny of the methanogenic community was observed: Methanomicrobiales and Methanobacteriaceae dominated the incubation system at the lower temperatures of 15 and 25 °C, whereas Methanosarcina prevailed at 35 °C. The dominance of these hydrogenotrophic methanogens suggested that, at least at lower temperatures, H2 and CO2 might be the primary substrates for CH4 production during Microcystis anaerobic decomposition.  相似文献   

9.
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.  相似文献   

10.
Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.  相似文献   

11.
Methane is a potent greenhouse gas and produced mainly by methanogens. Few studies have specifically dealt so far with methanogens in estuarine environments. In this study, diversity and distribution of methanogens were investigated by clone library and T-RFLP analysis in a Jiulong River estuarine sediment core which contained clear sulfate–methane-transition zone. The majority of obtained sequences in clone libraries and T-RF peaks from T-RFLP analysis were assigned mainly to Methanosaeta, Methanomicrobiales and Methanosarcinales/ANME. The fragments of Methanosarcinales/ANME were most dominant group (mean 51 %) and composed largely of ANME-2a. In addition, Methanosaeta and Methanomicrobiales accounted for 21 and 28 % of all fragments. Therefore, the presence of Methanomicrobiales, Methanosaeta and ANME-2a was indicative of acetoclastic methanogenesis, hydrogenotrophic methanogenesis, and anaerobic methane oxidation in Jiulong River estuarine sediments. This study provided the important knowledge towards understanding methane cycling association of representative of methanogens involved in estuarine environments.  相似文献   

12.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

13.
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.  相似文献   

14.
In anaerobic processes, the population dynamics of methanogens in the methanogenic stage were monitored along with hydraulic retention times (HRTs) shift. Decreasing HRTs increased the loading rates of volatile fatty acids (VFAs) and ammonia. Methanomicrobiales (MMB) began to be dominant at longer than 12.5 days HRT, Methanosarcinales (MSL) were dominant at 8, 10, and 12.5 days HRT, and Methanobacteriales (MBT) were dominant at shorter than 6 days HRT. Increased loading rates of VFAs and ammonia increased MBT, decreased MMB, and had no significant effect on MSL. Maximal daily methane production was observed at 1.57 L/L when MSL copy numbers also reached 3.60 × 107 copy/mL as a peak, which were expressed as positive correlation between DMA and MSL. No sooner had methane yield (MY) increased from 1.15 to 1.32 L/g VSremoved along with HRT reduction from 25 to 22.5 days, then MY gradually decreased from 1.32 to 0.04 L/g VSremoved.  相似文献   

15.
We investigated methane production and oxidation and the depth distribution and phylogenetic affiliation of a functional gene for methanogenesis, methyl coenzyme M reductase subunit A (mcrA), at two sites of the Integrated Ocean Drilling Program Expedition 311. These sites, U1327 and U1329, are respectively inside and outside the area of gas hydrate distribution on the Cascadia Margin. Radiotracer experiments using 14C‐labelled substrates indicated high potential methane production rates in hydrate‐bearing sediments [128–223 m below seafloor (mbsf)] at U1327 and in sediments between 70 and 140 mbsf at U1329. Tracer‐free experiments indicated high cumulative methane production in sediments within and below the gas hydrate layer at U1327 and in sediments below 70 mbsf at U1329. Stable tracer experiments using 13C‐labelled methane showed high potential methane oxidation rates in near‐surface sediments and in sediments deeper than 100 mbsf at both sites. Results of polymerase chain reaction amplification of mcrA in DNA were mostly consistent with methane production: relatively strong mcrA amplification was detected in the gas hydrate‐bearing sediments at U1327, whereas at U1329, it was mainly detected in sediments from around the bottom‐simulating reflector (126 mbsf). Phylogenetic analysis of mcrA separated it into four phylotype clusters: two clusters of methanogens, Methanosarcinales and Methanobacteriales, and two clusters of anaerobic methanotrophic archaea, ANME‐I and ANME‐II groups, supporting the activity measurement results. These results reveal that in situ methanogenesis in deep sediments probably contributes to gas hydrate formation and are inconsistent with the geochemical model that microbial methane currently being generated in shallow sediments migrates downward and contributes to the hydrate formation. At Site U1327, gas hydrates occurred in turbidite sediments, which were absent at Site U1329, suggesting that a geological setting suitable for a gas hydrate reservoir is more important for the accumulation of gas hydrate than microbiological properties.  相似文献   

16.
Zhu DL  Sun C  He H 《Current microbiology》2012,64(6):539-544
Sediments from Xuanwu Lake have been dredged in the past 3 years to improve the water quality, but methanogenesis should still exist in the newly settled sediment. Methane production, methanogens, and physiochemical parameters were detected in the surface sediments (0–5 cm) and/or vertical sediments (0–21 cm, segmented at interval of 3 cm). Methane flux at water–air interface varied among five detected sites. Principal component analysis showed that CH4 flux, content of water and the concentration of total nitrogen (TN), CH4 and organic matters (OM) weighed most heavily on the component I in surface sediments while different patterns were observed for vertical sediments. The copy number of the 16S rRNA gene for bacteria was lower in the surface sediment (0–6 cm) than that in deeper sediments (12–21 cm), while 16S rRNA genes of Archaea were almost evenly distributed in the vertical sediments. Representatives belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in all samples of the vertical sediments, except that no members of the Methanococcales were detected in the samples at 0–6 cm. The level of Methanobacteriales reached a highest density at 18.1 × 104 copies g−1 dry weight (dw) at 6–9 cm; for Methanosarcinales (76.89 × 106 copies g−1 dw) and Methanococcales (82.70 × 103 copies g−1 dw) at 12–15 cm, whereas for Methanomicrobiales (43.37 × 106 copies g−1 dw) at 9–12 cm. Methanosarcinaceae and Methanosaetaceae reached to their highest densities at 6–9 and 9–12 cm, respectively. These data provided useful information for better understanding the methanogenesis in the newly settled sediments of a recently dredged lake.  相似文献   

17.
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.  相似文献   

18.
The microbial community structures of gas hydrate-bearing (Core 9) and non-hydrate-bearing (Core 1) marine sediments were investigated at Mississippi Canyon (MC) 118 in the Gulf of Mexico. Quantification by quantitative competitive (QC)-PCR showed that bacterial abundance was 2–3 orders of magnitude higher than archaeal abundance in these cores. Sulfate-reducing bacteria (SRB) were present at 103–104 dsrAB gene copies/g in both cores; methanogens or anaerobic methanotrophs were only present in Core 9 (102–105 mcrA gene copies/g). Denaturing gradient gel electrophoresis (DGGE) showed distinct patterns of bacterial community structure between Core 9 and Core 1 with ε-Proteobacteria predominating in the former and γ-Proteobacteria in the latter. Clone libraries were successfully constructed for both Archaea and Bacteria using functional genes (mcrA and dsrAB, respectively). The mcrA gene was present in Core 9, suggesting enhanced abundance or activity of methanogens or methane-oxidizing archaea in the hydrate-impacted sediment. The mcrA gene sequences were dominated by group c-d and group e. The majority (80%) of the dsrAB gene sequences fell into Syntrophobacteraceae-related group. This study indicates that microbial community structures are considerably different between the hydrate-bearing and non-hydrate-bearing sediment at MC 118. Our study is among the initial steps toward a comprehensive and long-term monitoring of microbial dynamics associated with gas hydrates in the Gulf of Mexico.  相似文献   

19.
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (~34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur.  相似文献   

20.
In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号