首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Primary cultures of neonatal cardiac myocytes were used to determine the effects of tumor-promoting phorbol esters on ribosomal RNA (rRNA) synthesis during myocyte growth. Treatment of myocytes with phorbol-12,13-dibutyrate (PDBu) increased protein accumulation by 25% and RNA content by 20%. Rates of rRNA synthesis were measured to assess the mechanism by which rRNA accumulated during myocyte growth. Rates of rRNA synthesis were determined from the incorporation of [3H]uridine into UMP of purified rRNA and the specific radioactivity of the cellular UTP pool. After 24h of PDBu treatment, cellular rates of 18S and 28S rRNA synthesis were accelerated by 67% and 64%, respectively. The increased rate of rRNA synthesis accounted for the net increase in myocyte rRNA content after PDBu treatment.  相似文献   

3.
Changes in cytoplasmic and chloroplast rRNA content and rates of rRNA synthesis and degradation of detached wheat leaves were determined. It was found that rRNA loss is proportionally higher in chloroplasts than in cytoplasm. Rates of synthesis were measured by incorporation of large amounts of [3H]orotic acid into rRNA. This approach overcame size differences between pyrimidine pools of cells under different physiological status. Furthermore, these pools reached nearly the same specific radioactivity as that of the administered solution. Rates of degradation were estimated either as the difference between synthesis and net variation of rRNA or by disappearance of radioactivity from 32P-labeled rRNA. Results indicated a decrease in the net rRNA synthesis capacity of leaves after 48 h of detachment. However, the fractional rates of rRNA synthesis were maintained in both cytoplasm and chloroplasts. Ribosomal RNA degradation rates were 2.5-fold higher in chloroplast than in cytoplasm. The observed chloroplast rRNA loss is due to an increased degradation rate which is 15-fold higher than the synthesis rate 48 h after detachment.  相似文献   

4.
During the first 48h of compensatory renal hypertrophy induced by unilateral nephrectomy, RNA content per cell increased by 20-40%. During this period, rates of RNA synthesis derived from the rates of labelling of UTP and RNA after a single injection of [5-(3)H]uridine showed no change in the rate of RNA synthesis (3.1nmol of UTP incorporated into RNA/min per mg of RNA). ATP and ADP pools were not changed. The rate of RNA synthesis was considerably in excess of the increment of total RNA appearing in the kidneys. With [5-(3)H]uridine as label, only continuous infusion for 24h could produce an increase (60%) in the specific radioactivity of renal rRNA in mice with contralateral nephrectomies. With a single injection of [methyl-(3)H]methionine used to identify methyl groups inserted into newly synthesized rRNA, the specific radioactivity of this rRNA was unchanged 5h after contralateral nephrectomy, increased by 60% at 9-48h, and returned to normal values at 120h. Most RNA synthesized in both nephrectomized and sham-nephrectomized mice has a short half-life. Since total cellular RNA content increases in compensatory hypertrophy despite unchanged rates of rRNA synthesis, the accretion of RNA might involve conservation of ribosomal precursor RNA or a change in rate of degradation of mature rRNA.  相似文献   

5.
6.
Myofibrillar protein synthesis in myostatin-deficient mice   总被引:1,自引:0,他引:1  
Either increased protein synthesis or prolonged protein half-life is necessary to support the excessive muscle growth and maintenance of enlarged muscles in myostatin-deficient mice. This issue was addressed by determining in vivo rates of myofibrillar protein synthesis in mice with constitutive myostatin deficiency (Mstn(DeltaE3/DeltaE3)) or normal myostatin expression (Mstn(+/+)) by measuring tracer incorporation after a systemic flooding dose of l-[ring-(2)H(5)]phenylalanine. At 5-6 wk of age, Mstn(DeltaE3/DeltaE3) mice had increased muscle mass (40%), fractional rates of myofibrillar synthesis (14%), and protein synthesis per whole muscle (60%) relative to Mstn(+/+) mice. With maturation, fractional rates of synthesis declined >50% in parallel with decreased DNA and RNA [total, 28S rRNA, and poly(A) RNA] concentrations in muscle. At 6 mo of age, Mstn(DeltaE3/DeltaE3) mice had even greater increases in muscle mass (90%) and myofibrillar synthesis per muscle (85%) relative to Mstn(+/+) mice, but the fractional rate of synthesis was normal. Estimated myofibrillar protein half-life was not affected by myostatin deficiency. Muscle DNA concentrations were reduced in both young and mature Mstn(DeltaE3/DeltaE3) mice, whereas RNA concentrations were normal, so the ratio of RNA to DNA was approximately 30% greater than normal in Mstn(DeltaE3/DeltaE3) mice. Thus the increased protein synthesis and RNA content per muscle in myostatin-deficient mice cannot be explained entirely by an increased number of myonuclei.  相似文献   

7.
Inhibition of protein synthesis (up to 95%) in starved rat liver cells after a single injection of a sublethal dose of cycloheximide (0.3 mg per 100 g of body weight) results in degradation of 18S rRNA during the first 3 hours, whereas the 28S rRNA remains unaffected. However, the increase of 28S rRNA degradation products was observed by the 6th and 12th hours. The rapid decay of 18S rRNA is due to the degradation of this RNA in 40S ribosomal subunits. In contrast to 28S rRNA the specific radioactivity of 18S rRNA is increased by the 6th hour. Presumably the synthesis and processing of 18S rRNA impaired during the 1st hour are recovered partially or completely by this time. A molecular mechanism underlying 18S rRNA degradation in 40S ribosomal subunits is proposed.  相似文献   

8.
9.
10.
Turnover of ribosomal 28S and 18S rRNA during rat liver regeneration   总被引:1,自引:0,他引:1  
The turnover of 28S and 18S rRNA was studied in the course of 12 d after partial hepatectomy, including the proliferative (1st to 5th d) and post-proliferative (6th to 12th d) phases of liver regeneration. Turnover data, as the day-to-day rates of synthesis and degradation of 28S and 18S rRNA, were obtained by employing a suitable experimental procedure for the estimation of the increase of the amount of rRNA in the regenerating liver. It was found that 28S and 18S rRNA are accumulated into the cytoplasm and degraded at identical rates both in the proliferative and post proliferative phases. The turnover of both rRNA moieties is markedly slower during the first 3 d of liver regeneration.  相似文献   

11.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

12.
Stimulation of resting WI38 cells, prelabeled with [3H]leucine, with fibroblastic growth factor (FGF) or serum, caused increased nuclear translocation of [3H]non-histone proteins [( 3H]NHP) and DNA synthesis, and a parallel decrease of proteolysis. [3H]NHP migration was independent of protein synthesis. Fractionation of the nuclear proteins in a pH gradient of 2.5-6.5 showed that [3H]NHP fractions with high degradation rates in resting cells corresponded to the [3H]NHP fractions with high migration rates in stimulated cells, suggesting that degradation and migration of [3H]NHP are linked. FGF inhibited cellular uptake of [3H]chloroquine, suggesting that FGF inhibits NHP degradation via lysosomes. The lysosomotropic amine eserine had similar effects as FGF. It is proposed that FGF induces NHP migration to the nucleus by inhibiting their lysosomal degradation. FGF also caused migration of [3H]histones, however, the mechanism is not clear.  相似文献   

13.
The stain intensity of the nucleolus organizer regions (NORs) of acrocentric chromosomes was correlated positively with incorporation of [3H]uridine into 18S rRNA and 28S rRNA from cultured diploid human skin fibroblasts. An analysis of these data from twins by a path model indicated that no other common genetic or environmental parameters were required to explain the relationship between NOR scores and uptake of [3H]uridine into mature rRNA species.  相似文献   

14.
Summary The incorporation of [3H]-5-uridine into cytoplasmic 18S and 28S ribosomal ribonucleic acid (rRNA) was examined in Colcemid-synchronized strain L cells during G1 and S phases of the cell cycle in the presence of 5×10−5 m uridine, which was determined to be the saturating concentration for this system. The data show that in S phase a significant increase occurs in the level of [3H]-5-uridine incorporation into each rRNA species. During a 90-min exposure period, S phase cells incorporate 3.4 times as much [3H]-5-uridine into 18S rRNA and 1.9 times as much into 28S rRNA as do G1 cells. The time required for maturation of the ribosomal RNA species during G1 and during S phase is the same, with 18S rRNA appearing in the cytoplasm in 20 min and 28S rRNA in 40 min.  相似文献   

15.
The synthesis and processing of RNA by isolated HeLa cell nuclei was studied at low ionic strength in the presence of alpha-amanitin. The RNA polymerase reaction, with endogenous template and enzyme, rapidly reaches a plateau dependent on the amount of nuclei. Evidence is presented that incorporation of [(3)H]UMP proceeds only in growing RNA chains, whereas initiation of new RNA chains is arrested. The product formed contains all the main components of the 45S pre-rRNA (precursor of rRNA) maturation pathway (45S, 32S and 20S pre-rRNA; 28S and 18S rRNA). Most of the labelled material is in the mature rRNA components and their immediate precursors, even at very short times of incubation (2min). Small, but definite, 5S and 4S RNA peaks are also observed. At shorter incubation times a substantial amount of [(3)H]UMP is incorporated into RNA molecules in the 24S and 10-16S zones. This RNA material is considered to represent the non-conserved segments of 45S pre-rRNA in the process of nucleolytic degradation. A model for the tracer study of the topology of 45S pre-rRNA, on arrest of rRNA initiation, is discussed. The experimental evidence obtained supports the following structure of 45S pre-rRNA: 5'-end-28S rRNA unit-18S rRNA unit-nonconserved segment-3'-end.  相似文献   

16.
The degradation of zinc-metallothionein (MT) was studied in monolayer cultures of adult rat hepatocytes. Hepatocytes were incubated overnight in serum-free medium containing either [35S]cysteine or [3H]leucine and 100 microM zinc to induce MT synthesis. Total cellular 35S-MT was measured in the heat-stable extract of cell homogenate and quantified by fast protein liquid chromatography. When zinc was removed from the medium, 35S-MT turnover was almost 3-fold faster than that of [3H]Leu protein (t1/2 = 11 and 29 hr, respectively). The decrease in the cellular level of 35S-MT reflected degradation since less than 1% of total cellular 35S-MT was secreted into the medium. The rate of MT degradation was inversely proportional to cellular zinc content. In contrast, the degradation of [3H]Leu protein was not affected by changes in cellular zinc concentration. Chloroquine, a lysosomotrophic amine, and tosyl lysine chloromethyl ketone, an inhibitor of trypsin-like neutral protease activity, inhibited 35S-MT degradation by 65% and 50%, respectively, when cells were incubated in medium with 1 microM zinc. Turnover of [3H]Leu protein, but not 35S-MT, was enhanced by insulin deprivation. These data suggest that the degradation of hepatic MT (i) is primarily regulated by cellular zinc content and (ii) occurs in both lysosomal and nonlysosomal compartments.  相似文献   

17.
18.
The combined measurement of MAO A activity (using [3H]5-HT as a specific substrate) and [3H]harmaline binding capacity indicated that the concentration of MAO A in brain was higher in 14-28 day old rats than in adult animals. The turnover rates of this enzyme in the forebrain and the brain stem of young (14-28 day old) and adult rats were calculated by following the recovery of MAO A activity and of [3H]harmaline binding capacity after an acute treatment with pargyline (75mg/kg i.p.). Both the fractional rate constant for MAO A degradation and its synthesis rate per g of fresh tissue were significantly higher in young animals. However, the calculation of the absolute synthesis rates of MAO A per brain area gave very similar values in young and adult animals: 1.3-1.5 × 1013 molecules of MAO A synthesized per day in the forebrain and 2.3-2.9 × 1012 molecules per day in the brain stern. The results illustrate the validity of using [3H]harmaline binding to evaluate possible changes in the turnover rate of MAO A in tissues.  相似文献   

19.
The production of cytoplasmic and nucleolar rRNA species was examined in HeLa cells infected with high multiplicities of adenovirus type 5. Both 28S and 18S rRNA newly synthesized in infected cells ceased to enter the cytoplasm as reported previously (N. Ledinko, Virology 49: 79-89, 1972; H. J. Raskas, D. C. Thomas, and M. Green, Virology 40: 893-902, 1970). However, the effects on 28S cytoplasmic rRNA were observed considerably earlier in the infectious cycle than those on 18S rRNA. The inhibition of cellular protein synthesis and of the appearance in the cytoplasm of labeled cellular mRNA sequences (G. A. Beltz and S. J. Flint, J. Mol. Biol. 131: 353-373, 1979) were also monitored in infected cultures. During the later periods of an infectious cycle, from 18 h after infection, nucleolar rRNA synthesis and processing and exit of 18S rRNA from the nucleus were inhibited, probably reflecting the failure of infected cells to synthesize normal quantities of ribosomal proteins. The earliest responses of cellular RNA metabolism to adenovirus infection were, however, the rapid and apparently coordinate reductions in the levels of newly synthesized 28S rRNA and cellular mRNA sequences entering the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号