首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raman scattering from nucleic acids adsorbed at a silver electrode   总被引:1,自引:0,他引:1  
Adsorption of nucleic acids at a silver electrode polarized to -0.6 to -0.1 V (vs. Ag/AgCl) was investigated by means of surface enhanced Raman scattering (SERS) spectroscopy. Single-stranded polyriboadenylic acid and thermally denaturated DNA adsorbed at the silver electrode yield two intense bands at 734 and 1335 cm-1 on the SERS spectra. These bands, assigned to the vibrations of adenine residue rings, were much less intense if the SERS spectra were recorded for double-helical complex polyadenylic X polyuridylic acid and native DNA. Moreover, the courses of alkaline denaturation of DNA and its digestion by deoxyribonuclease I were observed by SERS spectroscopy. The results were interpreted as support for the view that intact double-helical segments of nucleic acids are not denatured or destabilized due to their adsorption at the positively charged and roughened surface.  相似文献   

2.
The application of PAT for in‐line monitoring of biopharmaceutical manufacturing operations has a central role in developing more robust and consistent processes. Various spectroscopic techniques have been applied for collecting real‐time data from cell culture processes. Among these, Raman spectroscopy has been shown to have advantages over other spectroscopic techniques, especially in aqueous culture solutions. Measurements of several process parameters such as glucose, lactate, glutamine, glutamate, ammonium, osmolality and VCD using Raman‐based chemometrics models have been reported in literature. The application of Raman spectroscopy, coupled with calibration models for amino acid measurement in cell cultures, has been assessed. The developed models cover four amino acids important for cell growth and production: tyrosine, tryptophan, phenylalanine and methionine. The chemometrics models based on Raman spectroscopy data demonstrate the significant potential for the quantification of tyrosine, tryptophan and phenylalanine. The model for methionine would have to be further refined to improve quantification.  相似文献   

3.
Surface enhanced Raman scattering of three enzymes--alkaline phosphatase, horseradish peroxidase and lactoperoxidase is studied. The intensity of normal vibrations of definite amino acids is determined by their orientation on the surface and depends on the electrode potential. Alkaline phosphatase and lactoperoxidase make a complex with silver ions.  相似文献   

4.
Podstawka E 《Biopolymers》2008,89(11):980-992
This work presents a Fourier-transform absorption infrared, Fourier-transform Raman, and surface-enhanced Raman scattering (SERS) study of the following peptides belonging to the bombesin-like family: phyllolitorin, [Leu(8)]phyllolitorin, NMB, NMC, and PG-L. The SERS study was undertaken to understand the adsorption mechanism of bombesin-like peptides on an electrochemically roughened silver electrode surface and to show changes in the adsorption mechanism with alterations in amino acids and small tertiary structures. The SERS spectra presented here shows bands mainly associated with the Trp(8) residue vibrations. The presence of mainly pyrrole coring vibrations for phyllolitorin and [Leu(8)]phyllolitorin and mainly benzene coring modes for NMB and NMC indicated that these groups interact with the roughened silver electrode surface. Furthermore, N(1)--C(8) and C(3)--C(9) bonds of the PG-L indole ring seemed to have nearly a vertical orientation on the electrode surface. In addition, distinct vibrations of the C--S fragment were observed in the SERS spectra of [Leu(8)]phyllolitorin and PG-L. The strong enhancement of the nu(C==O) vibration in the [Leu(8)]phyllolitorin SERS spectrum yielded evidence that the intact C==O bond(s) bind strongly to the silver electrode surface, whereas NMC, phyllolitorin, and NMB were located near the silver surface. This finding was supported by the presence of the nu(C--C(==O)) mode. The amide I band observed at 1642 and 1634 cm(-1) for NMB and NMC, respectively, and the Raman amide III band seen in the 1282-1249 cm(-1) range for all peptides except PG-L, indicate that the strongly hydrogen-bonded alpha-helical conformation and random-coil structure are favored for binding to the surface. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 980-992, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

5.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

6.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

7.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

8.
G Csaba  Z Darvas 《Bio Systems》1987,20(3):225-229
Aromatic, heterocyclic, polar and non-polar amino acids were examined for imprinting potential in a unicellular (Tetrahymena) model system. Serine gave rise to positive, glycine to negative imprinting, whereas valine, tryptophan, tyrosine and phenylalanine had no imprinting effect whatever. However, tyrosine and phenylalanine stimulated the division of Tetrahymena already at primary interaction, the former even for a relatively long time. It follows that amino acids, too, can give rise to imprinting, although their imprinting potentials are dissimilar. These phenomena have attracted attention to possible interrelationships between the supposed amino acid receptors of Tetrahymena and the evolution of amino acids to hormones.  相似文献   

9.
Female rats were fed defined diets limiting in one or more of certain amino acids and with or without vitamin E throughout gestation and lactation. Deficits of tryptophan, phenylalanine/tyrosine, or methionine/cystine reduced the body weight of progeny to about 50% or less of normal but only low tryptophan was cataractogenic. When total dietary amino acids were 12.4%, a low (65 mg%) level of tryptophan resulted in 34% incidence of cataract if vitamin E was simultaneously withheld. Elevation of total amino acids to 24.8% while maintaining tryptophan at 65 mg% caused 70 or 90% incidence of nuclear lens opacities in the presence or absence, respectively, of vitamin E. Maternal dietary amino acid imbalance was also associated with a 50% decrease in lens insoluble (membrane) proteins in the progeny independent of dietary vitamin E or the occurrence of opacities.  相似文献   

10.
Aromatic amino acids (phenylalanine, tyrosine and tryptophan) were heated at 300°C under nitrogen and volatile compounds generated were examined. Twelve compounds in which many of them have aromatic rings were identified in the volatiles from thermal degradation of phenylalanine. Tyrosine and tryptophan produced some phenols and indoles, respectively, besides several compounds. Formation mechanisms of some compounds were also discussed.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a wide range of survival times. We aimed to explore prognostic factors related to short survival based on clinical features and plasma metabolic signatures using surface‐enhanced Raman spectroscopy (SERS). One hundred and thirty‐eight sporadic ALS cases were enrolled serially, including 62 for the short‐duration group (≤3 years) and 76 for the long‐duration group (>3 years). Multivariate analysis showed that an older age of onset (>60 years; odds ratio [OR] = 3.98, 95% CI: 1.09‐14.53), lower body mass index (BMI) (<18.5; OR = 6.80, 95% CI: 1.36‐33.92), and lower ALSFRS‐R score (<35; OR = 6.03, 95% CI: 1.42‐25.63) were associated with higher odds of tracheotomy or death, while a higher uric acid (UA) level showed a protective effect (>356.36 μmol/L; OR = 0.19, 95% CI: 0.05‐0.73). SERS analysis showed significant differences between the two groups, and pathway analysis highlighted five main metabolic pathways, including metabolisms of glutathione, pyrimidine, phenylalanine, galactose, and phenylalanine‐tyrosine‐tryptophan biosynthesis. In conclusion, age of onset, BMI, ALSFRS‐R score and UA, together with dysregulation of glucose, amino acid, nucleic acid, and antioxidant metabolism contributed to disease progression, and are therefore potential therapeutic targets for ALS.  相似文献   

12.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl-tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl-tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl-tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl-tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

13.
Tryptophan was found to be degraded in Saccharomyces cerevisiae mainly to tryptophol. Upon chromatography on DEAE-cellulose two aminotransferases were identified: Aromatic aminotransferase I was constitutively synthesized and was active in vitro with tryptophan, phenylalanine or tyrosine as amino donors and pyruvate, phenylpyruvate or 2-oxoglutarate as amino acceptors. The enzyme was six times less active with and had a twenty times lower affinity for tryptophan (K m=6 mM) than phenylalanine or tyrosine. It was postulated thus that aromatic aminotransferase I is involved in vivo in the last step of tyrosine and phenylalanine biosynthesis. Aromatic aminotransferase II was inducible with tryptophan but also with the other two aromatic amino acids either alone or in combinations. With tryptophan as amino donor the enzyme was most active with phenylpyruvate and not active with 2-oxoglutarate as amino acceptor; its affinity for tryptophan was similar as for the other aromatic amino acids (K m=0.2–0.4 mM). Aromatic aminotransferase II was postulated to be involved in vivo mainly in the degradation of tryptophan, but may play also a role in the degradation of the other aromatic amino acids.A mutant strain defective in the aromatic aminotransferase II (aat2) was isolated and its influence on tryptophan accumulation and pool was studied. In combination with mutations trp2 fbr, aro7 and cdr1-1, mutation aat2 led to a threefold increase of the tryptophan pool as compared to a strain with an intact aromatic aminotransferase II.  相似文献   

14.
The kinetics of the incorporation into protein of [3H]phenylalanine, [3H]tyrosine and [3H]tryptophan were studied with homogenates prepared from whole brain of 1-, 7-, 21- and 60-day-old rats. The maximal velocities (Vmax)of incorporation of phenylalanine and tyrosine decreased and the apparent Michaelis-constants (Km) for all three amino acids increased with increasing age of the rats. Tyrosine had the smallest and tryptophan the largest Km values in all age groups. Phenylalanine competitively inhibited the incorporation of tyrosine, but tyrosine inhibited non-competitively the incorporation of phenylalanine. Tryptophan inhibited competitively the incorporation of phenylalanine, but at least partially non-competitively the incorporation of tyrosine. Phenylalanine and tyrosine did not significantly affect the incorporation of tryptophan in homogenates from 60-day-old rats. In 1-day-old rats only a very large excess of phenylalanine or tyrosine inhibited detectably. The Ki for phenylalanine in the incorporation of tyrosine was significantly smaller in 1- than in 60-day-old rats. In every case the inhibition presumably occurred at a single rate-limiting step in the complicated process of incorporation of amino acids into protein.  相似文献   

15.
The three aromatic amino acids phenylalanine, tyrosine, and tryptophan are synthesized in the plastids of higher plants. There is, however, biochemical evidence that a cytosolic isoform exists of the enzyme catalysing the first step of that branch of the pathway which is specific for the synthesis of phenylalanine and tyrosine, i.e. chorismate mutase (CM). We now report on the isolation of a cDNA clone encoding a cytosolic CM isozyme from Arabidopsis thaliana that was identified by complementing a CM-deficient Escherichia coli strain. The deduced amino acid sequence of this isozyme was 50% identical to that of a previously isolated plastidic CM, and 41% identical to that of yeast CM. The organ-specific expression patterns of the two CM genes were rather similar, but only the gene encoding the plastidic isozyme was elicitor- and pathogen-inducible. The plastidic CM expressed in E. coli was activated by tryptophan and inhibited by phenylalanine and tyrosine, whereas the cytosolic isozyme was insensitive. The existence of a cytosolic CM isozyme implies that either a cytosolic pathway (partial or complete) for the biosynthesis of phenylalanine and tyrosine exists, or that prephenate, originating from chorismate in the cytosol, is utilized for the synthesis of metabolites other than these two aromatic amino acids.  相似文献   

16.
Electrochemical oxidation of L,alpha-amino acids at a paraffin-wax impregnated spectroscopic graphite electrode (WISGE) was studied by means of linear sweep, cyclic, phase-sensitive alternating current and differential pulse voltammetric techniques. It was found that out of the amino acids usually occurring in proteins only tyrosine, tryptophan, histidine, cystine, cysteine and methionine were oxidized at the WISGE. At relatively low concentrations of amino acids (up to ca. 2 x 10(-4) M) the electrode process in which the amino acids are oxidized at the WISGE has the characteristics of an irreversible reaction controlled by diffusion. Coulometric measurements showed that oxidation of tyrosine and tryptophan at the WISGE, i.e. of amino acids which are responsible for the oxidizability of proteins at graphite electrodes, is a two-electron process. At higher concentrations of tyrosine-and tryptophan (above ca. 2 x 10(-4) M) adsorption of the oxidation product of these amino adds was demonstrated.  相似文献   

17.
Of 21 l-amino acids tested (at 1.2 x 10(-4)m), only histidine and the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) protect Salmonella typhimurium strains from inhibition of growth and immediately reverse the growth inhibition by 5 x 10(-4)m 2-thiazole-dl-alanine.  相似文献   

18.
Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.  相似文献   

19.
Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.  相似文献   

20.
Raman spectroscopy is rapidly finding favour for applications in the life science because of the ease with which it can be used to extract significant data from tissue and cells. However, the Raman effect is an inherently weak effect, which hinders the analysis of low concentration analytes. Raman sensitivity can be improved via the surface enhanced Raman scattering (SERS) effect. In SERS, Raman spectra are dramatically amplified when a molecule is adsorbed onto nano-roughened noble metal surfaces such as silver and gold. The degree of enhancement enables single-molecule detection, which offers the potential for the unambiguous identification of analytes at concentrations that are useful in both a forensic and a chemical biology context. Here we discuss some of the practical applications of SERS to both low-level narcotic detection, and how this can be applied to chemical biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号