首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The structures of guinea pig satellite DNAs I, II, and III have been analyzed by digestion with seven restriction nucleases. From the cleavage patterns it is obvious that the long-range periodicities in these three satellites differ rather characteristically Satellite I is fairly resistant to six nucleases and gives only a number of weak discrete bands which do not show a simple regularity. By the restriction nuclease from Arthrobacter luteus, however, it is cleaved extensively and yields very heterogeneous breakdown products. This is consistent with the high extent of divergence previously found for this satellite, e. g. by sequence analysis. Satellite II is almost completely resistant to all nucleases, indicative of a high degree of sequence homogeneity of this satellite. Satellite III is completely broken by the restriction nuclease from Bacillus subtilis into fragments which form a novel, highly regular series of bands in gel electrophoresis. The patterns show that the satellite is composed of tandem repeats ofapproximately 215 nucleotide pairs length, each repeat unit containing two cleavage sites for this nuclease. The data are consistent with the assumption that 30--40% of all cleavage sites have been eliminated by a random process. Satellite III DNA yields weak degradation patterns of the same periodicity with a number of other restriction nucleases. Cleavage sites for these nuclease are clustered on separatesmall segments of the satellite DNA. In this respect, the satellite is similar to others, notably the mouse satellite DNA. The three guinea pig satellites are examples of more general types of satellite structures also found in othe organisms. Similarities and differences to other satellites are discussed with special consideration to theories on the evolution of this class of DNA.  相似文献   

2.
Summary Mitochondrial (Mt) DNA from mitochondrial mutants of race s Podospora anserina and from senescent cultures of races s and A was examined. In mutants, we observed that fewer full length circles (31 ) were present; instead, smaller circles characteristic for each mutant sudied were found. Eco Rl digestion of these mutant MtDNAs indicated that in certain mutants, although specific fragments were absent, the total molecular weight of the fragments was not much different than wild-type.The properties of senescent MtDNA was strikingly different from either wild-type or mutant Mt DNA. First, a multimeric set of circular DNA was observed for both race s and A, with a monomeric repeat size of 0.89 . These circles ranged in size from 0.89 to greater than 20 ; only one molecule out of some 200 molecules was thought to be of full length (31 ). Density gradient analysis showed that there were two density species: a majority were at the same density as wild-type (1.694 g/cm3) and a second at 1.699 g/cm3. Most of the circular molecules from MtDNA isolated by either total DNA extraction or by extraction of DNA from isolated mitochondria were contained in the heavy DNA fraction. Eco R1 enzymatic digestion indicated that the light DNA had several fragments (amounting to about 23×106 daltons) missing, compared with young, wild-type MtDNA. Heavy senescent MtDNA was not cleaved by Eco R1. Analysis with Hae III restriction endonuclease showed also that light senescent MtDNA was missing certain fragments. Heavy MtDNA of average size 20×106 daltons, yielded only one fragment, 2,500 bp long, by digestion with Hae III restriction endonuclease. Digestion of heavy DNA with Alu I enzyme yielded 10 fragments totalling 2,570 bp. By three criteria, electron-microscopy, Eco R1 and Hae digestion, we conclude that the heavy MtDNA isolated from senescent cultures of Podospora anserina consisted of a monomeric tandemly repeating subunit of about 2,600 bp length.These results on the properties of senescent MtDNA are discussed with regard to the published properties of the rho - mutation in the yeast, S. cerevisiae.  相似文献   

3.
Restriction fragments from purified mitochondrial DNA can be readily detected following rapid end-labeling with [α-³²]nucleoside triphosphates and separation by gel electrophoresis. Mitochondrial DNA from 12 populations of Meloidogyne species was digested with 12 restriction enzymes producing more than 60 restriction fragments for each species. The mitochondrial genome of M. arenaria is the most genetically distinct of the four species compared. M. arenaria shows approximately 2.1-3.1% nucleotide sequence divergence from the mitochondrial genomes of M. javanica, M. incognita, and M. hapla. Among the latter three species, interspecific estimates of sequence divergence range from 0.7 to 2.3%. Relatively high intraspecific variation in mitochondrial restriction fragment patterns was observed in M. hapla. Intraspecific variation in M. incognita resulted in sequence divergence estimates of 0.5-1.0%. Such polymorphisms can serve as genetic markers for discerning mitochondrial DNA genotypes in nematode populations in the same way that allozymes have been used to discern nuclear DNA genotypes.  相似文献   

4.
5.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

6.
α-Satellite DNA from African green monkey cells was analysed with restriction nucleases in some detail confirming and complementing our earlier results. With EcoRI and HaeIII (or BsuRI isoschizomer), about 25 and 10%, respectively, of the satellite DNA were cleaved into a series of fragments of the 172 bp repeat length and multiples thereof. To allow studies with fragments of homogeneous sequence unit length, HindIII fragments were covalently joined with the plasmid pBR313. After transformation 19 clones were obtained, containing up to three monomer fragments. Nine of the clones were characterized by digestion with EcoRI. Three of these had cleavage sites for this nuclease in the satellite DNA portion. In the six clones tested with HaeIII no cleavage site was detected in the cloned DNA. The results are discussed in relation to the nucleotide sequence data recently published by Rosenberg et al. (1978) and in the context of random and nonrandom processes in satellite DNA evolution.  相似文献   

7.
Using samples of human cellular DNA digested with restriction endonucleases Eco RI, Hind III, Hinc II, Bam HI, Alu I, or Hae III, we were able to localize globin gene fragments separated by agarose gel electrophoresis. The fragments were transferred to nitro-cellulose filters and identified by hybridization to [32P] cDNA for total adult globin mRNA. The α-globin gene fragments were specifically identified by their presence in normal controls and absence in DNA from homozygous α-thalassemia, a genetic disorder due to deletion of α-globin genes. In addition, the patterns with Hind III indicate a 4.1 kb distance between the centers of the normal duplicated α-globin gene loci.  相似文献   

8.
A highly repetitive satellite DNA sequence from the genome ofDrosophila tristis with a length of 181 bp has been cloned in the pUC plasmid. The sequence hybridizes to the telomeres of all chromosomes but the Y ofD. tristis and produces a ladderlike hybridization pattern with filterbound genomic DNA ofD. tristis digested with Eco RI or Pst I with the hybridization bands at fragment lengths in multiples of 181 bp. A similar pattern is found when the genomic DNA comes fromD. ambigua or, though less clear, fromD. microlabis. Additional bands appear in the zones of high fragment lengths, too. InD. obscura andD. kitumensis, however, the 181 bp sequence is found in fragments with a length of a few kb only. The 181 bp sequence is tandemly arranged in the genome ofD. tristis and has a copy number of about 82,000 per haploid genome (i.e. 10 per cent of the total DNA). A sequence comparison among four independently cloned copies of the family fromD. tristis and another homologous sequence fromD. obscura, found by chance, shows a one to six per cent variation in basepair composition. However, low divergence (only one per cent) between two copies ofD. tristis and between the one ofD. obscura and one ofD. tristis was observed, and high divergence (six per cent) between these two pairs. This is discussed and explained as the evolutionary consequence of an existing homogenization process by unequal crossing over.  相似文献   

9.
Nucleotide sequence of mouse satellite DNA.   总被引:33,自引:20,他引:13       下载免费PDF全文
The nucleotide sequence of uncloned mouse satellite DNA has been determined by analyzing Sau96I restriction fragments that correspond to the repeat unit of the satellite DNA. An unambiguous sequence of 234 bp has been obtained. The sequence of the first 250 bases from dimeric satellite fragments present in Sau96I limit digests corresponds almost exactly to two tandemly arranged monomer sequences including a complete Sau96I site in the center. This is in agreement with the hypothesis that a low level of divergence which cannot be detected in sequence analyses of uncloned DNA is responsible for the appearance of dimeric fragments. Most of the sequence of the 5% fraction of Sau96 monomers that are susceptible to TaqI has also been determined and has been found to agree completely with the prototype sequence. The monomer sequence is internally repetitious being composed of eight diverged subrepeats. The divergence pattern has interesting implications for theories on the evolution of mouse satellite DNA.  相似文献   

10.
M Carlson  D Brutlag 《Cell》1977,11(2):371-381
The sequence organization of the 1.688 satellite DNA (density 1.688 g/cm3 in CsCl) has been investigated, and this satellite has been found to differ from the other D. melanogaster satellite DNAs in having a much greater sequence complexity. Purification of 1.688 satellite DNA by successive equilibrium density centrifugations yielded a fraction 77% pure. Segments of satellite DNA were isolated by molecular cloning in the plasmid vector pSC101. One recombinant plasmid contained a segment of 1.688 satellite DNA 5.8 kilobase pairs in size and was stable during propagation in E. coli. Recognition sites for restriction enzymes from Haemophilus aegyptius (Hae III), Haemophilus influenzae f (Hinf) and Arthrobacter luteus (Alu I) were mapped in the satellite DNA of this hybrid plasmid. The spacing of Hae III, Hinf and two Alu I sites at regular intervals of about 365 base pairs is strong evidence that the sequence complexity of this satellite DNA is 365 base pairs. Further evidence comes from the finding that both gradient-purified and cloned 1.688 satellite DNA renature with their Hae III sites in register. The Hae III and Hinf sites in gradient-purified satellite DNA have been shown by Manteuil, Hamer and Thomas (1975) and Shen, Wiesehahn and Hearst (1976) to be distributed at intervals of 365 base pairs and integral multiples thereof. These investigators proposed that some of the sites in an otherwise regular array have been randomly inactivated. Cloned satellite DNA provided a hybridization probe for sensitive studies of the arrangement of these recognition sites in gradient-purified satellite DNA. Some regions of satellite DNA were found to contain many fewer recognition sites than expected from the proposed models. These findings suggest that different regions of 1.688 satellite DNA may exhibit different arrangements of Hae III and Hinf recognition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号