首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
细胞工厂在轮状病毒基因重配株LD9培养中的应用初探   总被引:1,自引:0,他引:1  
为了探索用细胞工厂代替转瓶培养轮状病毒基因重配株LD9及收获高滴度的LD9病毒原液和提高产量的可行性,分别在2层4、层细胞工厂和3L1、5L转瓶培养Vero细胞,比较两种容器内细胞的生长状态。结果显示,以相同活细胞数2.5×104/ml同时接种两种不同培养容器时,细胞工厂培养3d已长成单层,而转瓶培养需5d;对两种容器长满单层时的细胞经胰酶消化后通过细胞仪计数、分析,结果显示,两种容器培养细胞长成单层时的单位面积细胞密度相当;对长成致密单层细胞的两种容器以相同的MOI(MOI=0.1)接种LD9病毒,转瓶培养的病毒于第8d病毒滴度达到高峰,为6.0~6.5 lgCCID50/ml;细胞工厂第5d病毒滴度达高峰,为6.5 lgCCID50/ml,并于第9d病毒滴度再次达到峰值,为6.0~6.5 lgCCID50/ml,实现二次收获病毒。  相似文献   

2.
微载体灌注培养制备Vero细胞狂犬病疫苗   总被引:2,自引:0,他引:2  
乐威  叶林柏  张捷  刘静 《中国病毒学》2004,19(4):373-375
本文研究在生物反应器中用微载体连续灌注培养Vero细胞生产狂犬病毒制备技术.在5L体积的生物反应器中,加入含10g/L微载体的199培养基,接种Vero细胞至细胞浓度达到1×105/mL,培养7d后细胞可生长至6~7×106/mL,然后以感染复数(MOI)为0.01接种狂犬病毒VaG株,接毒后24h开始收获,连续收获12d左右,收获的病毒滴度范围在6.0~8.5log LD50/mL,收获的病毒原液经浓缩、灭活和纯化等步骤制备成疫苗,各项质量指标均达到<中国生物制品规程>2000年版要求.实验表明,用生物反应器微载体灌注培养制备人用Vero细胞狂犬病疫苗小试工艺可行.  相似文献   

3.
为优化轮状病毒株在Vero细胞上的培养条件,将轮状病毒基因重配株LH9按0.1MOI分别接种于不同规格的细胞培养瓶(100ml、2000ml、3L、15L)。病毒接种采用吸附与未吸附两种方式、病毒收获采取低温冻融后离心与直接离心两种方法,观察分析对病毒滴度的影响。实验中,用CASY细胞计数仪分析活细胞率,病毒接种后逐日观察细胞病变(CPE)并取样,采用细胞半数感染量测定病毒滴度。结果表明,使用不同规格细胞培养瓶经吸附法培养接种、低温破碎法收获的LH9株病毒滴度高,其中以15L立瓶培养滴度最高(6.0~7.0 logCCID50/ml)。  相似文献   

4.
目的以细胞工厂代替转瓶培养轮状病毒基因重配株Ls的可行性研究。方法采用细胞工厂与相应的转瓶培养工艺作对比,比较两种容器内细胞生长状态与病毒收获液滴度,并对细胞工厂培养条件进行了优化。结果以相同浓度接种细胞时,细胞工厂4 d长成单层,转瓶却需要7 d,经细胞仪计数后单位面积内细胞密度相当;以相同MOI接种病毒后,转瓶内的病毒于第7天病毒滴度达到峰值,细胞已完全脱落;细胞工厂于第3天病毒滴度达到峰值,并实现了3次收获。细胞工厂每次收获的病毒液滴度都稳定在一定范围,与转瓶相当。另外,细胞工厂培养条件优化结果表明,Vero细胞最佳接种浓度为3.0×104细胞/cm2,接种病毒的最适MOI为0.02~0.04。结论使用细胞工厂培养Ls株病毒不仅提高了效率,而且减少了培养空间,可替代转瓶规模化生产轮状病毒疫苗。  相似文献   

5.
本文研究在生物反应器中用微载体连续灌注培养Vero细胞生产狂犬病毒制备技术。在5L体积的生物反应器中,加入含10g/L微载体的199培养基,接种Vero细胞至细胞浓度达到1×105/mL,培养7d后细胞可生长至6~7×106/mL,然后以感染复数(MOI)为0.01接种狂犬病毒VaG株,接毒后24h开始收获,连续收获12d左右,收获的病毒滴度范围在6.0~8.5logLD50/mL,收获的病毒原液经浓缩、灭活和纯化等步骤制备成疫苗,各项质量指标均达到《中国生物制品规程》2000年版要求。实验表明,用生物反应器微载体灌注培养制备人用Vero细胞狂犬病疫苗小试工艺可行。  相似文献   

6.
目的应用生物反应器培养Vero细胞制备EV71病毒。方法以3 L生物反应器采用4 g/L、8 g/L Cytodex-1微载体培养比较Vero细胞比生长率,并以4 g/L微载体培养EV71病毒。结果 4 g/L微载体培养Vero细胞3~4 d微载体细胞密度达2.3×106/mL,按0.001的感染复数(MOI)接种EV71病毒,病毒收获液的滴度最高达7.90 lgPFU/mL,较静置培养平均高出0.92 lgPFU/mL。结论初步建立了3 L生物反应器微载体培养Vero细胞制备EV71病毒的工艺,为进一步放大生产规模奠定了基础。  相似文献   

7.
目的轮状病毒基因重配株Ls(G3型)在生物反应器微载体培养Vero细胞条件的优化。方法采用3 L生物反应器微载体培养Vero细胞,观察Ls株在不同病毒感染复数(0.001、0.002、0.010、0.040 MOI)、不同温度(34.5℃和35.5℃)、不同病毒收获时间(24和48 h)对病毒增殖的影响。根据病毒滴度和收获量筛选出最适MOI、培养温度及病毒的收获时间。结果以0.002 MOI接种Vero细胞,温度为34.5℃培养病毒,滴度最高达7.50 lg CCID50/m L;48 h可连续收获4次病毒液,且收获总量及病毒滴度均高于24 h。结论通过对Ls株在生物反应器微载体Vero细胞培养条件的优化,获得的病毒液滴度高及连续培养多次收获量增加的有效方法,为进一步规模化培养奠定了基础。  相似文献   

8.
目的通过牛肾细胞在两种不同载体中培养效果的比较,为牛肾细胞在细胞工厂中规模化生产提供真实的、有力的支持。方法不同代次牛肾细胞在两种载体中经过相同培养条件进行培养。结果实验中原代牛肾细胞在细胞工厂接种密度为5.5×104/cm2左右,在15 L转瓶接种密度为9.0×104/cm2左右。一代牛肾细胞在细胞工厂接种密度为6.5×104/cm2左右,在15 L转瓶接种密度为10×104/cm2左右。二代牛肾细胞在细胞工厂接种密度为7.0×104/cm2左右,在15 L转瓶接种密度为14×104/cm2左右。两种载体中牛肾细胞生长状况均能达到培养要求。结论细胞工厂能在有限的空间内利用最大限度的培养表面培养牛肾细胞,不仅节约了传代前的细胞用量,而且提高了培养后的细胞产量。  相似文献   

9.
目的建立无血清培养基培养Vero细胞制备发热伴血小板减少综合征布尼亚病毒(severe fever with thrombocytopenia syndrome bunyavirus,SFTSV)的工艺。方法分别采用含10%牛血清的MEM(10%MEM培养基)和无血清M2培养基(SF-M2培养基)在方瓶中培养Vero细胞制备SFTSV,比较无血清与含血清培养基培养Vero细胞制备SFTSV在病毒滴度及病毒繁殖曲线之间的差异。在生物反应器里用无血清培养的方式进行工艺放大,收获病毒原液并进行检定。结果无血清培养的Vero细胞能够满足SFTSV培养需求,与含血清细胞培养相比,单位细胞病毒产量没有降低,达到30~60个活病毒/细胞。可以实现在生物反应器的工艺放大,病毒高峰时病毒滴度均在7.0lg PFU/m L以上。结论无血清细胞培养可以应用于SFTSV的培养,有利于降低疫苗生产过程中的纯化难度,提高疫苗安全性。  相似文献   

10.
微载体高密度培养Vero细胞的研究   总被引:10,自引:0,他引:10  
微载体是动物细胞高密度培养的有效手段。首先在硅化的方瓶中对Cytodex 1、Cy-todex 3、Biosilon、Bellco Glass Microcarrier、CT-1、CT-3、MC-1、CT-28种国产和进口微载体进行了比较和筛选。确定以Biosilon作为Vero细胞高密度培养的首选微载体。用500mlWheaton搅拌瓶探索影响Vero细胞高密度培养的条件,表明50~60mg/ml的微载体浓度、1~2×106/ml的细胞接种密度、适当的通气(95%O_2+5%CO2)对该细胞的高密度培养具有重要意义。在200ml培养体积的Wheaton搅拌瓶中,微载体浓度为50~60mg/ml,细胞接种密度为9.24×105/ml,搅拌速度为65~85r/min,经25d培养,Vero细胞密度可达2.34×107/ml,表明50~60mg/ml的微载体浓度对培养细胞没有毒性。接着在1.5L CelliGen生物反应器中进行培养,细胞接种密度为4.98×105/ml,培养体积为1.2L,日灌流量从0.20L逐渐加大到3.65L,经22d连接灌流培养,最终细胞密度可达2.05×107/ml。  相似文献   

11.
A modified “outside-in” roller bottle with a high ratio of surface area to volume was used to cultivate Giardia lamblia. Yields were high, more so when bottles were rotated at 6 rph (9.3 ± 4.0 × 108 trophozoites/bottle) than at 12 rph (4.2 ± 1.9 × 108 trophozoites/bottle). The method was more efficient than stationary tube culture with respect to utilization of culture medium; trophozoite concentration after roller bottle culture (1.7 ± 0.8 × 106 trophozoites/ml) was significantly higher (by a factor of 2.8) than concentrations obtained from stationary tube culture (0.6 ± 0.4 × 106 trophozoites/ml, P < 0.002). Increased yields from roller bottle culture were not accounted for by a reduction in mean trophozoite generation time (roller culture, 10.7 ± 1.2 hr; stationary tube culture, 10.3 ± 0.6 hr) but may be related to prolongation of the period of log phase growth or increased trophozoite survival. Trophozoite yields expressed per unit surface area were significantly higher from roller bottle culture (7.2 ± 3.1 × 105 trophozoites/cm2) than from stationary tubes (1.9 ± 1.0 × 105 trophozoites/cm2, P < 0.002). Attempts to cultivate G. lamblia in spin culture using polystyrene beads (Biosilon) as a microcarrier were unsuccessful, trophozoite growth being inhibited rather than promoted. Roller bottle culture of G. lamblia, however, is efficient, economical, and less laborious than stationary tube culture, particularly when more than 108 trophozoites are required.  相似文献   

12.
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50/mL), more than 4–100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15–30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.  相似文献   

13.
A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky’s disease virus (ADV) production. Growth kinetics of BHK 21 C13 cells in the wave bioreactor during 3-day period were determined. At the end of the 3-day culture period and cell density of 1.82 × 106 cells ml-1, the reactor was inoculated with 9 ml of gE- Bartha K-61 strain ADV suspension (105.9 TCID50) with multiplicity of infection (MOI) of 0.01. After a 144 h incubation period, 400 ml of ADV harvest was obtained with titre of 107.0 TCID50 ml−1, which corresponds to 40,000 doses of vaccine against AD. In conclusion, the results obtained with the wave bioreactor using BHK 21 C13 cells showed that this system can be considered as suitable for ADV or BHK 21 C13 cell biomass production.  相似文献   

14.
MDCK细胞对各种流感病毒具有高度敏感性,广泛应用于流感病毒的分离和疫苗制备.通过探索培养基中促进细胞贴壁的关键组分,并筛选水解物,开发了适合MDCK细胞生长的低血清培养基.发现钙、镁离子是细胞贴壁不可缺少的物质,麦麸水解物可以部分代替培养基中的血清.利用该低血清培养基,经过消化转移将MDCK细胞从5L反应器放大至25 L反应器,微载体上细胞贴附均匀、生长旺盛,25 L反应器中培养48 h细胞密度可达30.5×105 cells/ml.研究结果为工业规模反应器微载体悬浮培养MDCK细胞生产流感病毒奠定了基础.  相似文献   

15.
A process for human influenza H1N1 virus vaccine production from Madin–Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional–integral–derivative control of pH, dissolved O2 (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0?×?109 to 3.2?×?1010 cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8?×?107 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.  相似文献   

16.
Single use culture systems are a tool in research and biotechnology manufacturing processes and are employed in mammalian cell-based manufacturing processes. Recently, we characterized a novel bioreactor system developed by PBS Biotech. The Pneumatic Bioreactor System? (PBS) employs the Air-wheel?, which is a mixing device similar in structure to a water wheel but is driven by the buoyant force of gas bubbles. In this study, we investigated the physical properties of the PBS system, with which we performed biological tests. In 2 L PBS, the mixing times ranged from 6 (30 rpm, 0.175 vvm) to 15 sec (10 rpm, 0.025 vvm). The kLa value reached upto 7.66/h at 0.5 vvm, even without a microsparger, though this condition is not applicable for cell cultures. Also, when a 10 L PBS equipped with a microsparger was evaluated, a kLa value of upto approximately 20/h was obtained particularly in mild cell culture conditions. We performed cultivation of Chinese hamster ovary (CHO) cells in 2 and 10 L PBS prototypes. Results from the PBS were compared with those from an Erlenmeyer flask and conventional stirred tank type bioreactor (STR). The maximum cell density of 10.6 × 106 cells/mL obtained fromthe 2 L PBSwas about 2 times higher than that from the Erlenmeyer flask (5.6 × 106 cells/mL) andwas similar to the STR (9.7 × 106 cells/mL) when the CHO-S cells were cultured. These results support the general suitability of the PBS system using pneumatic mixing for suspension cell cultivation as a novel single-use bioreactor system.  相似文献   

17.
Japanese encephalitis virus (JEV), a mosquito-borne Flavivirus, is a major cause of acute encephalitis, and neurons have been proposed to be the principle JEV target cells in the central nervous system. However, clinically, infection with JEV leads to increased levels of cytokines and chemokines in the serum and cerebrospinal fluid (CSF) the levels of which correlate with the mortality rate of patients. This research aimed to study the role of microglial cells in JEV infection. Mouse microglial cells (BV-2) supported the replication of JEV with extracellular production of virus by 10 h post-infection, and virus titer reached a maximum (2.55 × 1010 pfu/ml) by day 3 post-infection. While apoptosis was induced in response to virus infection, no alteration in nitric oxide production was observed. Microglial cells remained productively infected with JEV for up to 16 weeks without significant morphological alterations, and the released virions were infectious to mouse neuroblastoma (NA) cells. The high virus production and long persistence of JEV in microglial cells suggests that these cells may serve as viral reservoirs for the infection of neurons in the CNS.  相似文献   

18.
A multisurface glass roller bottle has been constructed for the growth of animal cells in culture. This bottle contains five concentrically placed glass cylinders that provide additional surfaces for the growth of animal cells. The bottle occupies the same space as a standard roller bottle, but it contains nine times the surface area of a standard bottle. L and HeLa cells can be grown in the bottle with cell yields 5- to 10-fold greater than in a standard bottle. L cells can be induced to produce interferon in the multisurface bottle.  相似文献   

19.

A live-attenuated, human vaccine against mosquito-borne yellow fever virus has been available since the 1930s. The vaccine provides long-lasting immunity and consistent mass vaccination campaigns counter viral spread. However, traditional egg-based vaccine manufacturing requires about 12 months and vaccine supplies are chronically close to shortages. In particular, for urban outbreaks, vaccine demand can be covered rarely by global stockpiling. Thus, there is an urgent need for an improved vaccine production platform, ideally transferable to other flaviviruses including Zika virus. Here, we present a proof-of-concept study regarding cell culture-based yellow fever virus 17D (YFV) and wild-type Zika virus (ZIKV) production using duck embryo-derived EB66® cells. Based on comprehensive studies in shake flasks, 1-L bioreactor systems were operated with scalable hollow fiber-based tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) perfusion systems for process intensification. EB66® cells grew in chemically defined medium to cell concentrations of 1.6 × 108 cells/mL. Infection studies with EB66®-adapted virus led to maximum YFV titers of 7.3 × 108 PFU/mL, which corresponds to about 10 million vaccine doses for the bioreactor harvest. For ZIKV, titers of 1.0 × 1010 PFU/mL were achieved. Processes were automated successfully using a capacitance probe to control perfusion rates based on on-line measured cell concentrations. The use of cryo-bags for direct inoculation of production bioreactors facilitates pre-culture preparation contributing to improved process robustness. In conclusion, this platform is a powerful option for next generation cell culture-based flavivirus vaccine manufacturing.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号