首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
用根瘤切片法,从长骨木麻黄(C. glauca Sieb.)、鸡冠木麻黄(C. cristata)和海滨木麻黄(A. littoralis)野生根瘤中分离出具有侵染能力的Frankia sp、NNCG01、NNCCR03和NNACL05菌株,它们都具有Frankia的典型形态特征,在无氮培养条件下,形成大量的顶囊和孢子囊。各菌株对简单碳源和氮源的利用比对复杂碳源和氮源的利用更好,而且都具有较高的耐盐(NaC1)能力,在0.2M盐浓度中,生长受到的影响很小,在盐浓度为0.5M时,也有一定生长。这三株Frankia菌株都能交叉感染木麻黄属(Casuarina)和异木麻黄属(Allocasuarina)中的一些放线菌结瘤植物,因此,从木麻黄属植物根瘤分离的Frankia菌株和从异木麻黄属植物根瘤分离的Frankia菌株属于同一个互接种簇。这三株Frankia的自生固氮活性与它们的共生固氮活性呈正比,而且同一菌株与不同种木麻黄植物共生固氮的效率没有明显的差异,为初步筛选高效共生固氮的Frankia菌株提供了一个快速简便的方法,具有重要的实际意义。  相似文献   

2.
弗兰克氏菌的分类研究进展   总被引:5,自引:1,他引:4  
弗兰克氏菌是非豆科植物共生固氮菌。到目前为止,已发现它们可以分别与8个科、25个属的200多种非豆科植物共生[1],其中包括赤杨、杨梅、沙棘、胡颓子、马桑、木麻黄、悬钩子、仙女木等。这些植物对于荒地的开垦和防止水土流失具有重要意义。而弗兰克氏菌与这些植物共生形成可  相似文献   

3.
李志真 《微生物学报》2008,48(11):1432-1438
[目的]了解福建省放线菌结瘤植物共生固氮菌Frankia的遗传多样性.[方法]利用16S-23SrDNA间隔区(rrn)和nifD-K基因间隔区的PCR扩增和RFLP技术,分析了福建省木麻黄、杨梅、桤木、胡颓子等共生Frankia纯培养菌株的遗传差异.[结果]17个菌株获得rrn扩增片段,2个杨梅菌株和1个胡颓子菌株扩增未成功,酶切图谱经聚类分析表明6个地点的细枝木麻黄、短枝木麻黄、粗枝木麻黄12个共生Frankia菌株同源性高,属于一个类群,2个地点的4个杨梅菌株和1个四川桤木菌株亲缘关系近,为另一类群.25个Frankia菌株的,nifD-K基因间隔区PCR-RFLP分析结果显示,7个地点的3种木麻黄14个菌株聚类为一个类群,4个地点的7个杨梅菌株、2个地点的2个四川桤木菌株以及1个台湾桤木菌株聚类为另一个类群,胡颓子菌株则为独立的类群.[结论]研究结果表明福建省共生Frankia遗传多样性丰富.  相似文献   

4.
植物的血红蛋白   总被引:5,自引:0,他引:5  
近几年来,植物血红蛋白的研究进展十分迅速,豆科植物中与共生固氮无关的血红蛋白基因和包括禾本科植物在内的许多非豆科植物血红蛋白基因的发现使人们对植物血红蛋白有了新的认识,进而把植物血红蛋白分为共生血红蛋白和非共生血红蛋白两种类型。对这两种血红蛋白的性质、功能、基因结构及表达等方面的研究不仅对共生固氮中植物与微生物的相互关系和固氮工程研究;而且对植物细胞的呼吸代谢和耐涝机理等研究有重要价值。  相似文献   

5.
丛枝菌根共生的信号转导及其相关基因   总被引:1,自引:0,他引:1  
大多数植物根系能够与某些真菌形成相互依存、互惠互利的菌根共生关系.植物在提供给丛枝菌根真菌赖以生存的碳源的同时,也通过真菌从土壤中吸取矿质营养.丛枝菌根能够促进植物生长,提高植物抗逆性和抵御外界不良环境,对提高农林业生产效率、增强生态系统稳定性及维护生物多样性具有重要的意义.菌根的形成是一系列信号分子交换传递和共生相关基因表达调控的结果.在信号转导途径中,共生受体样蛋白激酶、离子通道和钙/钙调依赖性蛋白激酶基因的表达对菌根的形成是不可或缺的.就丛枝菌根共生的信号转导机制以及信号途径中3个必需基因的结构、功能及研究现状进行了综述.  相似文献   

6.
Na^(+)/H^(+)转运蛋白在植物的耐盐性和生长发育中起关键作用。该研究采用生物信息学方法对木麻黄(Casuarina equisetifolia L.)NHX基因家族成员进行全基因组鉴定和分析,并利用qRT-PCR技术检测NHX基因在盐胁迫下的表达,以探讨木麻黄NHX家族基因的生物学功能,为进一步研究盐胁迫机制以及挖掘其抗逆基因奠定理论基础。结果显示:(1)鉴定获得8个木麻黄NHX基因家族成员(CeqNHX1-8),系统进化树分析发现其可分为Endo、Vac和PM共3个亚家族,分别包含1、5和2个基因;编码氨基酸数为324~546个,分子量为34.87~60.27 kD,等电点在6.29~9.08之间,均为疏水蛋白。(2)基因结构和Motif分析发现,所有CeqNHXs基因的外显子数为2~17不等,且均具有保守的Na^(+)/H^(+)交换结构域;CeqNHX基因的蛋白质二级结构主要以α-螺旋和不规则卷曲为主。(3)木麻黄CeqNHX基因的启动子区含有大量非生物胁迫和激素响应元件,其中CeqNHX5启动子共含有13种共38个元件。(4)qRT-PCR分析表明,CeqNHX基因家族成员在木麻黄根、茎、枝和雄花序中均有不同程度的表达,且多数主要在小枝上表达;在200 mmol/L NaCl处理下,8个木麻黄CeqNHXs基因的表达量均有一定程度的上调。研究表明,木麻黄CeqNHXs基因家族可能参与多种激素和应激反应的调节,且CeqNHXs基因的表达对盐胁迫有显著的响应,推测CeqNHXs基因与木麻黄的耐盐性相关。  相似文献   

7.
研究对"高等"金缕梅类的8科24属25种植物和外类群Hamamelis两种植物的叶绿体DNA trnL-F区进行了测序,并根据DNA序列对该类植物的系统发育关系进行了分析.结果表明: 所有"高等"金缕梅类植物的科结合成一支, bootstrap 分析支持率为100%,各科之间的关系得到很好分辨.Nothofagus是最基部的一支;山毛榉科(Fagaceae)作为姐妹群与"核心"金缕梅类的科(桦木科Betulaceae,胡桃科Juglandaceae, 木麻黄科Casuarinaceae, 杨梅科Myricaceae, Ticodendraceae 和马尾树科Rhoipteleaceae)组成一支,并得到很强的支持."核心"金缕梅类构成三支,关系如下:(1) Casuarina (Ticodendron, (Betulaceae)), (2) Juglandaceae-Rhoipteleaceae, (3) Myricaceae.本研究显示叶绿体DNA trnL-F区对分辨"高等"金缕梅类科间关系及部分科内的属间关系十分有效.  相似文献   

8.
棍子植物中的麻黄科,仅有一个麻黄属,总共约40种,中国有12种及4变种。种数虽少,可分类上并不容易。尤其因为它们的植株形态相似,常常认不准确。三个县混淆的属麻黄、木贼、木麻黄三个属(种)植物分别属于探子植物麻黄科、获类植物木贼科、被子植物木麻黄科。可是它们营养  相似文献   

9.
高越  郭顺星  邢晓科 《菌物学报》2019,38(11):1808-1825
自然环境下,兰科植物种子细小无胚乳,需要和适宜的真菌共生才能萌发,因而与真菌有天然的共生关系。自身繁殖率低加之近年来栖息地环境破坏导致兰科植物资源更加濒危,而通过筛选适合的真菌进行种子的共生萌发可以有效地实现兰科植物的种质保育及濒危种类野生居群的生态恢复。本文对地生型、附生型以及腐生型等兰科植物已发现的萌发真菌的多样性进行了系统地梳理,发现担子菌门的胶膜菌科、角担菌科以及蜡壳耳目真菌为已报道共生萌发真菌的主要类群;同时对兰科植物种子的共生萌发机制,包括形态学机制、营养机制和分子机制等方面的相关研究进行了归纳论述,但是当前关于兰科植物和真菌互作机制方面的研究还相对较少,许多问题需要进一步明确。本文对共生萌发真菌在兰科植物保育和繁育中的应用以及共生萌发机制的研究等方面具有一定的参考价值。  相似文献   

10.
徐玲玲  张焱  许静 《菌物学报》2019,38(3):291-312
兰科植物与丝核菌类真菌,包括胶膜菌科、角担菌科和蜡壳菌科等形成菌根共生体。胶膜菌科真菌作为最广泛分布的共生菌根真菌,表现出与兰科植物的协同进化与密切关系。除了形态学特征分析和比较外,分子技术促进了兰科植物胶膜菌的分类学和多样性研究。兰科植物与胶膜菌的特异性可能限制兰科植物的分布和移栽后的生存能力,但有些兰科植物与胶膜菌的共生关系会因为地理分布或环境变化进行调整,使植物更好地生存,这种适应性为实现无菌苗菌根化来促进兰科植物的迁地保护或繁殖提供可能。本文综述了兰科植物共生菌根真菌胶膜菌在分类学、多样性、特异性和适应性等方面的研究。  相似文献   

11.
Casuarinaceae are a Gondwanic family with a unique combination of morphological characters not comparable to any other family. Until recently, the 96 species in the family were classified in a single genus, Casuarina s.l. A recent morphological revision of the family resulted in the splitting of Casuarina s.l. into four genera-Allocasuarina, Casuarina s.s., Ceuthostoma, and Gymnostoma. This study uses matK sequence data from 76 species of Casuarinaceae and eight outgroup taxa to examine the phylogenetic structure within the Casuarinaceae. The study demonstrates the monophyly of the four genera and examines the relationships within the family; it tests the validity of the infra-generic subdivision of Allocasuarina; it discovers geography-based infra-generic subdivisions within Gymnostoma and Casuarina; and, finally, provides a molecular framework on which to trace the evolution of xeromorphy in the Casuarinaceae.  相似文献   

12.
Summary Studies using inoculum suspensions prepared from single nodules of Casuarinaceae suggest that more than oneFrankia strain may be found in some nodules. Evidence is also presented to support the concept of intergeneric specificity in host-Frankia relations in the family Casuarinaceae.  相似文献   

13.
The symbiotic interactions between Frankia strains and their associated plants from the Casuarinaceae under controlled conditions are well documented but little is known about these interactions under natural conditions. We explored the symbiotic interactions between eight genotypically characterized Frankia strains and five Casuarinaceae species in long-term field trials. Characterization of strains was performed using the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) for the nifD – nifK intergenic transcribed spacer (ITS) and 16S–23S ITS. Assessments of the symbiotic interactions were based on nodulation patterns using nodule dry weight and viability, and on actual N2 fixation using the δ15N method. The PCR–RFLP patterns showed that the analyzed strains belonged to the same genotypic group (CeD group), regardless of the host species and environment of origin. The nodule viability index is introduced as a new tool to measure the viability of perennial nodules and to predict their effectiveness. The host Casuarinaceae species was a key factor influencing both the actual N2-fixing activity of the associated Frankia strain and the viability of nodules within a location. This is the first study providing information on the symbiotic interactions between genotypically characterized Frankia strains and actinorhizal plants under natural conditions. The results revealed a way to improve a long-term management of the Casuarinaceae symbiosis.  相似文献   

14.
N2-fixing actinorhizal trees in the family Casuarinaceae areeconomically of great interest in tropical and sub-tropicalzones because they are used for many purposes including protectionagainst wind, stabilization of sand dunes and the productionof firewood and charcoal. They are usually able to grow in sandysoils with low fertility by virtue of their ability to fix N2.The objective of this review is to discuss briefly the roleof mycorrhizas and, more extensively, that of cluster (proteoid)roots, developed by a number of species of Casuarinaceae toimprove the absorption of nutrients other than N from soil,especially those needed for N2fixation and growth. After evaluatingthe actual relationships between mycorrhizas and the Casuarinaceae,we highlight the possible role of cluster roots as an effectivealternative to mycorrhizas, and as a means of improvement ofgrowth of the trees in nutrient-deficient soils. This raisesthe question of what triggers the formation of cluster rootsin the Casuarinaceae. In addition to phosphorus deficiency,iron deficiency seems to be a major factor inducing the formationof cluster roots in Casuarina glauca and C. cunninghamiana.The number of cluster roots and the precocity of their formationare directly related to plant chlorosis due to Fe deficiency,as expressed by the critical concentration of chlorophyll inthe shoot (0.60 mg g - 1shoot f.wt). The effect of the nitrogensource on cluster root formation is discussed in relation topH values in the plant culture solution. The number of clusterroots formed in nitrate-fed plants increases with pH in therange of 5 to 9. Experiments carried out with alkaline and acidicsoils show that cluster roots are only produced when they areneeded to overcome soil nutrient deficiency due to the immobilizationof nutrient elements (P and Fe) by soil alkalinity. The possibleinvolvement of ethylene in the initiation and/or the morphogenesisof cluster roots is discussed. Copyright 2000 Annals of BotanyCompany Casuarinaceae, Casuarina cunninghamiana, Casuarina glauca, cluster roots, ethylene, iron deficiency, phosphorus deficiency, proteoid roots  相似文献   

15.
The influence of meteorological parameters on airborne pollen of Australian native arboreal species was investigated in the sub-tropical city of Brisbane, Australia over the five-year period, June 1994–May 1999. Australian native arboreal pollen (ANAP), shed by taxa belonging to the families Cupressaceae, Casuarinaceae and Myrtaceae accounts for 18.4% of the total annual pollen count and is distributed in the atmosphere during the entire year with maximum loads restricted to the months May through November. Daily counts within the range 11–100 grains m–3 occurred over short intervals each year and were recorded on 100 days during the five-year sampling period. Total seasonal ANAP concentrations varied each year, with highest annual values measured for the family Cupressaceae, for which greater seasonal frequencies were shown to be related to pre-seasonal precipitation (r 2 = 0.76, p = 0.05). Seasonal start dates were near consistent for the Cupressaceae and Casuarinaceae. Myrtaceae start dates were variable and established to be directly related to lower average pre-seasonal maximum temperature (r 2 = 0.78, p = 0.04). Associations between daily ANAP loads and weather parameters showed that densities of airborne Cupressaceae and Casuarinaceae pollen were negatively correlated with maximum temperature (p < 0.0001), minimum temperature (p < 0.0001) and precipitation (p < 0.05), whereas associations with daily Myrtaceae pollen counts were not statistically significant. This is the first study to be conducted in Australia that has assessed the relationships between weather parameters and the airborne distribution of pollen emitted by Australian native arboreal species. Pollen shed by Australian native Cupressaceae, Casuarinaceae and Myrtaceae species are considered to be important aeroallergens overseas, however their significance as a sensitising source in Australia remains unclear and requires further investigation.  相似文献   

16.
Plants from the Casuarinaceae family enter symbiosis with the actinomycete Frankia leading to the formation of nitrogen-fixing root nodules. We observed that application of the auxin influx inhibitor 1-naphtoxyacetic acid perturbs actinorhizal nodule formation. This suggests a potential role for auxin influx carriers in the infection process. We therefore isolated and characterized homologs of the auxin influx carrier (AUX1-LAX) genes in Casuarina glauca. Two members of this family were found to share high levels of deduced protein sequence identity with Arabidopsis (Arabidopsis thaliana) AUX-LAX proteins. Complementation of the Arabidopsis aux1 mutant revealed that one of them is functionally equivalent to AUX1 and was named CgAUX1. The spatial and temporal expression pattern of CgAUX1 promoter:beta-glucuronidase reporter was analyzed in Casuarinaceae. We observed that CgAUX1 was expressed in plant cells infected by Frankia throughout the course of actinorhizal nodule formation. Our data suggest that auxin plays an important role during plant cell infection in actinorhizal symbioses.  相似文献   

17.
The Casuarinaceae consists of the 4 genera Gymnostoma, Ceuthostoma, Casuarina and Allocasuarina. All the genera are found living today in Australia, Malaysia, Melanesia, and Southeast Asia. An abundant and widespread fossil record of the genus Gymnostoma is known from New Zealand, Argentina, South Africa, and Australia. This paper provides a compilation of basic vegetative and reproductive morphological data of the 4 genera of the Casuarinaceae with special emphasis on these features in Gymnostoma. The features are presented in tabular form and the data are compared and discussed. Most of the genera can be clearly distinguished by the morphology of their vegetative and reproductive organs. Species differences within the extant genera often are difficult to distinguish; therefore, comparative systematic analysis of these fossils from fragmentary and incomplete remains ranging through time will be very difficult, and care must be taken when interpreting evolutionary trends from them.  相似文献   

18.
Summary Fifteen species from three genera of the Casuarinaceae were inoculated with suspensions ofFrankia prepared from single nodule-lobes collected from different species and genera within the Casuarinaceae. Host-endophyte specificity was expressed mainly at the generic level. There was marked cross-inoculation within Casuarina and little nodulation ofCasuarina species from Allocasuarina sources with the exception of 3 sources ofFrankia fromA. torulosa which showed a high tendency to nodulateCasuarina species. Few sources from Casuarina nodulated species of Allocasuarina and while cross-inoculation within Allocasuarina was frequent it was less marked than within Casuarina. SomeFrankia inocula had wider host ranges than others, nodulating outside the genus or series of origin. It was not possible to determine if these apparent wider ranges in host spectra reflected genotypic differences betweenFrankia or were associated with the presence of more than oneFrankia strain in some inocula.  相似文献   

19.
Several of the most studied actinorhizal symbioses involve associations between host plants in the subclass Hamamelidae of the dicots and actinomycetes of the genus Frankia. These actinorhizal plants comprise eight genera distributed among three families of ‘higher’ Hamamelidae, the Betulaceae, Myricaceae, and Casuarinaceae. Contrasting promiscuity towards Frankia is encountered among the different actinorhizal members of these families, and a better assessment of the evolutionary history of these actinorhizal taxa could help to understand the observed contrasts and their implications for the ecology and evolution of the actinorhizal symbiosis. Complete DNA sequences of the chloroplast gene coding for the large subunit of ribulose 1,5-bisphosphate carboxylase (rbcL) were obtained from taxa representative of these families and the Fagaceae. The phylogenetic relationships among and within these families were estimated using parsimony and distance-matrix approaches. All families appeared monophyletic. The Myricaceae appeared to derive first before the Betulaceae and the Casuarinaceae. In the Casuarinaceae, the genus Gymnostoma derived before the genera Casuarina and Allocasuarina, which were found closely related. The analysis of character-state changes in promiscuity along the consensus tree topology suggested a strong relationship between the evolutionary history of host plants and their promiscuity toward Frankia. Indeed, the actinorhizal taxa that diverged more recently in this group of plants were shown to be susceptible to a narrower spectrum of Frankia strains. The results also suggest that the ancestor of this group of plant was highly promiscuous, and that evolution has proceeded toward narrower promiscuity and greater specialization. These results imply that a tight relationship between the phytogenies of both symbiotic partners should not be expected, and that host promiscuity is likely to be a key determinant in the establishment of an effective symbiosis.  相似文献   

20.
A unique mode of fertilization called chalazogamy, whereby the pollen tube passes through the chalaza instead of the micropyle, is known in several species of derived genera in Casuarinaceae. In this paper we report the occurrence of chalazogamy in Gymnostoma (G. poissonianum), the most primitive genus in the family. We also show that the pollen tube grows discontinuously from the stigma to ovules in about 3 months. At the time of pollination, the ovules have not yet formed in the ovary, and require a long time to develop. The pollen tube(s) lie in a zigzag line and are branched in the upper region of the style, and their growth is arrested there until the ovary develops further. Studies of the relevant literature further revealed discontinuous pollen-tube growth in relation to a prolonged period between pollination and fertilization, as well as chalazogamy, in Betulaceae, Juglandaceae and/or Fagaceae that are closely related to Casuarinaceae. This feature may have derived early in the evolution of Fagales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号