首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To describe the occurrence and virulence gene pattern of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) in healthy goats of Jammu and Kashmir, India. METHODS AND RESULTS: A total of 220 E. coli strains belonging to 60 different 'O' serogroups was isolated from 206 local (nonmigratory) and 69 migratory goats. All the 220 strains were screened for the presence of stx(1), stx(2), eaeA and hlyA genes. Twenty-eight E. coli (75.6%) strains from local and nine (24.3%) strains from migratory goats belonging to 18 different serogroups showed at least presence of one virulence gene studied. Twenty-eight strains (16.47%) (belonging to 13 different serogroups) from local goats carried stx(1) gene alone or in combination with stx(2) gene, while as only one strain (2%) from migratory goats possessed stx(2) gene alone. Interestingly in the present study none of the STEC strains carried eaeA gene. Similarly, none of the strains from local goats possessed eaeA and none of the migratory goats possessed stx(1) gene. Eight strains (16%) (belonging to four different serogroups) from migratory goats carried eaeA gene. Twenty-five (14.7%) and seven (14%) strains from local and migratory goats harboured hlyA gene respectively. CONCLUSIONS: Healthy goats of Jammu and Kashmir state serve as a reservoir of STEC and EPEC. Further studies in this direction are needed to work out whether or not they are transmitted to humans in this part of world. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report of isolation of STEC and EPEC strains from healthy goats in Jammu and Kashmir State of India, which could be a source of infection to humans.  相似文献   

2.
AIMS: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) in calves and lambs with diarrhoea in India. METHODS AND RESULTS: Faecal samples originating from 391 calves and 101 lambs which had diarrhoea were screened for presence of E. coli. A total number of 309 (249 bovine and 60 ovine) E. coli strains were isolated. A total of 113 bovine and 15 ovine strains were subjected to multiplex polymerase chain reaction (m-PCR) for detection of stx1, stx2, eaeA and EHEC hlyA genes. STEC and EPEC belonging to different serogpoups were detected in 9.73% of calves studied. Six per cent and 26.66% of lambs studied were carrying STEC and EPEC, respectively. Majority of the STEC serogroups isolated in this study did not belong to those which have been identified earlier to be associated mainly with diarrhoea and enteritis in cattle and sheep outside India. The most frequent serogroup among bovine and ovine EPEC was O26 (40%). One of the most important STEC serogroup O157, known for certain life-threatening infections in humans, was isolated from both bovine and ovine faecal samples. CONCLUSIONS: A high percentage of STEC and EPEC belonging to different serogroups are prevalent in calves and lambs with diarrhoea in India and could be the cause of disease in them. SIGNIFICANCE AND IMPACT OF THE STUDY: The study reports, for the first time, the isolation and characterization of STEC and EPEC serogroups associated with diarrhoea in calves and lambs in India. Many STEC and EPEC strains belonged to serogoups known for certain life-threatening diseases in humans.  相似文献   

3.
[目的]揭示从我国部分地区仔猪腹泻或水肿病病猪体内分离到的300个大肠杆菌分离株所属病原型(pathotype)、毒力基因及其与O血清型的关系.[方法]O血清型采用常规的凝集试验进行测定,毒力基因采用PCR方法检测.[结果]通过对这300个分离株的O血清型及其毒素、紧密素和黏附素基因进行鉴定,结果显示除50株未定型、17株自凝外,测定出233个分离株的血清型,这些分离株覆盖了45个血清型,其中以0149、0107、0139、093和091为主,共133株,占定型菌株的57.1%;拥有est Ⅰ、estⅡ、elt、stx2e和eae A基因的菌株分别为102(34.0%)、190(63.3%)、81(27.0%)、57(19.0%)和54(18.0%)株;分离株中有51株K88基因阳性(其中菌毛表达率为100%),75株F18基因阳性(其中菌毛表达率为50.7%),在K88菌株中,0149血清型与est Ⅰ或estⅡ elt密切相关,在F18菌株中,0107血清型与est Ⅰ或estⅡ、0139血清型与stx2e紧密相关.依其毒力特征可将这些分离株分为以下6种类型:ETEC、STEC、AEEC、ETEC/STEC、AEEC/ETEC和AEEC/ETEC/STEC,分别拥有190、24、36、32、17和1个菌株,占分离株的63.3%、8.0%、12.0%、10.7%、5.7%和0.3%.通过分析这些分离株的O血清型、毒素类型和黏附素型之间的相关性:猪源ETEC以0149、0107、093和098等血清型为主,0149:K88菌株主要与estⅡ或estⅡ elt肠毒素相关,0107:F18菌株主要与estⅡ相关,093和098血清型菌株主要与estⅡ肠毒素相关;STEC菌株以0139:F18血清型为主,拥有stx2e;AEEC菌株拥有紧密素,无明显优势血清型;ETEC/STEC菌株以0107:F18和0116:F18血清型为主,主要与est Ⅰ stx2e或estⅡ stx2e密切相关,ETEC/AEEC菌株以091和0107血清型为主,全部拥有肠毒素est Ⅰ和紧密素基因.[结论]我国至少存在6种病原型的猪肠道致病性大肠杆菌,其中ETEC为我国部分地区猪大肠杆菌病的主要病原,同时其病原型日益复杂.  相似文献   

4.
Three hundred and twenty-six Escherichia coli isolates recovered from 326 human faecal specimens from sporadic cases of diarrhoea in Kashmir valley, India, were investigated for the presence of stx(1), stx(2), eaeA, hlyA and lt virulence genes. None of the samples was positive for stx genes or Shiga toxins by PCR or enzyme-linked immunosorbent assay. Twenty-three E. coli isolates showed the presence of the eaeA gene, whereas three isolates harboured the lt gene. Enteropathogenic E. coli (EPEC) belonged to 10 different serogroups. Out of 23 EPEC isolates, the majority (78.26%) were atypical while five (21.73%) were typical. Only one of the typical EPEC harboured the EAF plasmid. Subtyping of the eaeA gene showed the presence of eaeA-alpha(1), eaeA-beta, eaeA-xi and eaeA-eta in one, two, four and two isolates, respectively. None of the E. coli isolates possessed eaeA-delta, eaeA-epsilon and eaeA-zeta. This study further upholds the opinion that Shiga toxin-producing E. coli do not pose a major threat to human health in India and eaeA-alpha(1), eaeA-beta, eaeA-xi and eaeA-eta could be common EPEC subtypes prevalent in humans with diarrhoea in India. The present study appears to be the first report of subtype analysis of the eaeA gene from India and also records the isolation of EPEC with the eaeA-xi gene from humans.  相似文献   

5.
The prevalence of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) E. coli strains in stool specimens from asymptomatic human carriers working in the canteens and also in the kitchen and sanitary facilities was evaluated. The E. coli genes coding for the following virulence markers: intimin (eae), enterohaemolysin (hlyA), and verotoxins type I and II (stx1 and stx2) were sought by multiplex PCR assay. E. coli isolates were obtained from 144 stool specimens, 295 swabs taken from kitchen hardware and surrounding facilities, and from 33 meat specimens. Only 66 (8.5%) of total 777 E. coli isolates belonged to O44, O18, O25, O127, O55, O114, O125, and O142 serogroups, the prevalent serogroups in Poland. None of the strains was classified as serogroup O157. The serogroups O44 and O18 were present most often among all typeable strains and their incidence was 51.5% and 25.8% respectively. Among 363 isolates assayed for the presence of the genes encoding virulence markers only 10 isolates (2.8%) carried eae gene. None of the isolates possessing eae gene belonged to the serogroups tested. The hlyA, stx1 and stx2 genes were absent in all E. coli isolates tested.  相似文献   

6.
为了解产志贺毒素大肠埃希菌 (Shigatoxin producingEscherichiacoli ,STEC)stx1,stx2 ,eaeA ,hlyA 4种毒力基因的分布情况 ,以及分离株对 18种抗生素的敏感性 ,采用多重PCR(multiplexPCR ,mPCR)法对分离株进行毒力基因的分子生物学鉴定 ;用WHO推荐的K B法对分离株进行抗生素的敏感性测定。产志贺毒素的大肠埃希菌共有 4 6株 ,其中 2种毒素均产生的有 2 2株 (4 7.8% ) ;单纯产生stx1的有 16株 (36 .9% ) ,stx2 的有 8株 (17.4 % ) ;4种毒力基因均存在的有 19株 (4 1.3% ) ,血清型为O15 7∶H7,而非O15 7∶H7血清型的菌株 (2 3/46 )中 ,4种毒力基因同时存在的仅有 3株 (6 .6 % ) ,但有 13株 (5 6 .9% )hlyA基因阳性。全部STEC对复方新诺明耐药 ,对链霉素耐药率为 2 8.3% ,氨苄西林为 30 .4 % ,红霉素为 6 9.6 % ,而且有 5株对至少 4种以上抗生素多重耐药 ,耐药谱为复方新诺明 链霉素 红霉素 氨苄西林。非O15 7型STEC耐药菌次为 12 2 ,而O15 7型为 6 3。可见 ,mPCR法可以快速检测STEC特征性毒力基因 ,以判定其致病性能。非O15 7型STEC对抗生素较易形成耐药性。  相似文献   

7.
AIMS: To investigate the prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in cattle from Paraná State, southern Brazil. METHODS AND RESULTS: One hundred and seven faeces cattle samples were cultured on Sorbitol-MacConkey agar. Escherichia coli colonies were tested for production of Shiga toxin using Vero-cell assay. A high prevalence (57%) of STEC was found. Sixty-four STEC were serotyped and examined for the presence of stx(1), stx(2), eae, ehxA and saa genes and stx(2) variants. The isolates belonged to 31 different serotypes, of which three (O152:H8, O175:H21 and O176:H18) had not previously been associated with STEC. A high prevalence of stx(2)-type genes was found (62 strains, 97%). Variant forms found were stx(2), stx(2c), stx(2vhb), stx(2vO111v/OX393) and a form nonclassifiable by PCR-RFLP. The commonest genotypes were stx(2)ehxA saa and stx(1)stx(2)ehxA saa. CONCLUSIONS: A high frequency of STEC was observed. Several strains belong to serotypes previously associated with human disease and carry stx(2) and other virulence factors, thus potentially representing a risk to human health. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of STEC in Paraná State, and its findings emphasize the need for proper cattle handling to prevent human contamination.  相似文献   

8.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

9.
AIMS: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) isolates from bovine mastitic milk in Brazil. METHODS AND RESULTS: A total of 2144 milk samples from dairy cattle showing mastitis were screened for the presence of E. coli. A total of 182 E. coli isolates were selected and examined. All were subjected to dot blot analysis using the CVD419 probe for the detection of the enterohaemolysin (hly) gene, and to a multiplex PCR for the detection of stx1, stx2 and eaeA genes. STEC were isolated from 22 (12.08%) milk samples. All the STEC isolates were tested for sensibility to 10 antimicrobials; the resistances most commonly observed were to cephalothin (86.3%), tetracycline (63.6%) and doxycycline (63.6%). CONCLUSION: STEC isolates were found in bovine mastitic milk in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY: STEC isolates from mastitic milk were potentially pathogenic for human in that they belonged to serogroups associated with diarrhoea and haemolytic-uraemic syndrome, some of them were stx2, eaeA and hly positive.  相似文献   

10.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms.  相似文献   

11.
The presence of Shiga toxin-producing Escherichia coli (STEC) strains in feces samples of cattle was determined using the cytotoxicity assay on Vero cells and a screening PCR system to detect stx genes. The STEC isolates were serotyped, tested for antimicrobial susceptibility, and analyzed for virulence genes using multiplex PCR. The verocytotoxin-producing E. coli - reverse passive latex agglutination (VTEC-RPLA) assay was also used to detect Shiga toxin production. The frequency of cattle shedding STEC was 36%. The isolates belonged to 33 different serotypes, of which O10:H42, O98:H41, and O159:H21 had not previously been associated with STEC. The most frequent serotypes were ONT:H7 (10%), O22:H8 (7%), O22:H16 (7%), and ONT:H21 (7%). Most of the strains (96%) were susceptible to all antimicrobial agents tested. Shiga toxin was detected by the VTEC-RPLA assay in most (89%) of the STEC strains. The frequency of virulence markers was as follows: stx1, 10%; stx2, 43%; stx1 plus stx2, 47%; ehxA, 44%; eae, 1%; and saa, 38%. Several strains belong to serotypes associated with human disease, and most of them carried a stx2-type gene, suggesting that they represent a risk to human health. The screening PCR assay showed fewer false-negative results for STEC than the Vero-cell assay and is suitable for laboratory routine.  相似文献   

12.
Aims:  To provide information on the prevalence and detection, in foods, of Shiga toxin-producing Escherichia coli (STEC) O91:H21.
Methods and Results:  Seven hundred fifteen minced beef meats and 205 raw milk samples were analysed by stx -specific PCR-ELISA. Samples positive for stx were subsequently tested for the presence of wzy -O91, fliC -H21 and the adhesin-encoding gene saa . For minced meat, 16 (2·2%) and 11 (1·5%) samples were found positive for ( stx , wzy -O91, fliC -H21) and ( stx , wzy -O91, fliC -H21, saa ) combinations, respectively. For raw milk, seven (3·4%) samples were found positive for the ( stx , wzy -O91, fliC -H21) combination but none of these contained saa . Two STEC O91:H21 saa -positive strains and three STEC O91 H21– and saa -negative strains were isolated by colony hybridization.
Conclusions:  A low prevalence of potentially pathogenic STEC O91:H21 in food products was found using a combination of PCR assays targeting stx , wzy -O91, fliC -H21 and saa .
Significance and Impact of the Study:  The PCR-based approach described here represents a valuable method for rapid screening of food samples contaminated by STEC O91:H21.  相似文献   

13.
Beef carcass sponge samples collected from July to August 1999 at four large processing plants in the United States were surveyed for the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC). Twenty-eight (93%) of 30 single-source lots surveyed included at least one sample containing non-O157 STEC. Of 334 carcasses sampled prior to evisceration, 180 (54%) were found to harbor non-O157 STEC. Non-O157 STEC isolates were also recovered from 27 (8%) of 326 carcasses sampled after the application of antimicrobial interventions. Altogether, 361 non-O157 STEC isolates, comprising 41 different O serogroups, were recovered. O serogroups that previously have been associated with human disease accounted for 178 (49%) of 361 isolates. Although 40 isolates (11%) carried a combination of virulence factor genes (enterohemorrhagic E. coli hlyA, eae, and at least one stx gene) frequently associated with STEC strains causing severe human disease, only 12 of these isolates also belonged to an O serogroup previously associated with human disease. Combining previously reported data on O157-positive samples (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999-3003, 2000) with these data regarding non-O157-positive samples indicated total STEC prevalences of 72 and 10% in preevisceration and postprocessing beef carcass samples, respectively, showing that the interventions used by the beef-processing industry effected a sevenfold reduction in carcass contamination by STEC.  相似文献   

14.
The distribution of virulence markers related to cytolethal distending toxin-V (CDT-V), subtilase cytotoxin (SubAB), the enterohemorrhagic Escherichia coli factor for adherence (Efa1), the adhesin similar to IrgA (Iha), the long polar fimbriae (LpfO113), the autoagglutinating adhesin (Saa), and the protein required for full expression of adherence of O157:H7 Sakai strain (ToxB) was investigated in 121 Shiga toxin-producing E. coli (STEC) strains isolated in Brazil. STEC strains were isolated from human infections (n=49), cattle (n=68) and ground meat samples (n=4). Overall, the lpfA(O113), iha, efa1, saa, and toxB sequences were observed in 89.2%, 87.6%, 47.1%, 43%, and 13.2% of the strains, respectively. The genes efa1 (96.6%) and toxB (27%) were only identified among eae-positive strains, while saa (83.8%), cdt-V (12.9%), and subAB (48.4%) just occurred in eae-negative STEC strains. STEC strains harboring cdt-V and subAB were for the first time described in the South American subcontinent. In addition, the simultaneous presence of cdt-V and subAB has not been previously reported, nor the presence of subAB in STEC O77, O79, O105, O174, and O178 serogroups. A diversity of virulence profiles was observed among the STEC strains studied. The most prevalent profile observed among eae-positive STEC strains mainly isolated from humans was eae efa1 iha lpfA(O113), whereas iha lpfA(O113) saa ehxA subAB prevailed among eae-negative STEC strains, mostly isolated from cattle and foods.  相似文献   

15.
AIMS: This study was carried out to evaluate the presence of Shiga toxin-producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments. METHODS AND RESULTS: Shellfish were collected in six growing areas or natural beds (B category) and nonfarming areas (D category) from July 2002 to August 2004. PCR detection of stx genes was performed on homogenized whole shellfish and digestive gland tissues enrichments. STEC strains were detected by colony DNA hybridization using a stx-specific gene probe and E. coli O157 strains were additionally searched by immunomagnetic separation with O157-specific magnetic beads. Stx genes were detected in 40 of 144 (27.8%) sample enrichments from mussels, oysters or cockles, 32 of 130 enrichments (24.6%) were from B-category areas and eight of 14 (57.1%) from the D-category area. Five strains carrying stx(1) or stx(1d) genes and one stx negative, eae and ehxA positive E. coli O157:H7 were isolated from six of 40 stx-positive enrichments. No relation was found between the total E. coli counts in shellfish and the presence of STEC strains in the samples. CONCLUSIONS: The STEC strains of different serotypes and stx types are present in shellfish from French coastal environments. It is the first isolation of STEC stx1d strains in France. SIGNIFICANCE AND IMPACT OF THE STUDY: Shellfish collected in coastal environments can serve as a vehicle for STEC transmission.  相似文献   

16.
The prevalence of Shiga-toxin-producing Escherichia coli (STEC) in healthy dairy ruminants was investigated between 1996 and 1998 by a multiplex polymerase chain reaction (mPCR) technique. A total of 13 552 E. coli colonies from 726 cows, 28 sheep and 93 goats out of 112 randomly selected dairy farms in Hessia, Germany were analysed. STEC strains were recovered from 131 (18.0%) cows, nine (32.1%) sheep and 70 (75.3%) goats. Further characterization of the STEC isolates showed that 89 (0.66% of the investigated colonies) of animal field strains carried stx1 gene, 64 (0.47%) stx2 gene and 57 (0.42%) stx1 and stx2 gene. Sixty (93.8%) out of 64 stx2 field strains were harboured by cows. In contrast, 74 (83.1%) out of 89 stx1 dairy animal field strains were from ovine or caprine origin. Only 17 (8. 1%) stx-positive isolates (13 from cattle, three from sheep and only one from goat) were positive for eaeA gene. Eight (9.0%) of the stx1, five (7.8%) of the stx2 and four (7.0%) of the stx1/stx2 gene-positive field strains carried the eaeA gene. The prevalence of EHEC-haemolysin (EHEC-hlyA) gene sequence was 88.8% (79 isolates) of the stx1 and 68.8% (44 isolates) of the stx2 isolates. Out of 57 stx1- and stx2-positive field-strains, 34 (59.6%) carried the EHEC-hlyA gene. E. coli O serovars O:157 and O:111 were not found. Only one isolate was positive with O26 antiserum.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) strains isolated in Mangalore, India, were characterised by bead-enzyme-linked immunosorbent assay (bead-ELISA), Vero cell cytotoxicity assay, PCR and colony hybridisation for the detection of stx1 and stx2 genes. Four strains from seafood, six from beef and one from a clinical case of bloody diarrhoea were positive for Shiga toxins Stx1 and Stx2 and also for stx1and stx2 genes. The seafood isolates produced either Stx2 alone or both Stx1 and Stx2, while the beef isolates produced Stx1 alone. The stx1 gene of all the beef STEC was found to be of recently reported stx1c type. All STEC strains and one non-STEC strain isolated from clam harboured EHEC-hlyA. Interestingly, though all STEC strains were negative for eae gene, two STEC strains isolated from seafood and one from a patient with bloody diarrhoea possessed STEC autoagglutinating adhesion (saa) gene, recently identified as a gene encoding a novel autoagglutinating adhesion.  相似文献   

18.
A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness.  相似文献   

19.
AIMS: To study the incidence of Shiga-toxigenic Escherichia coli (STEC) in seafoods from India. METHODS AND RESULTS: Escherichia coli isolated from various seafoods such as fresh fish, clams and water were screened for the presence of stx, hlyA and rfbO157 genes by PCR; 5% of clams and 3% of fresh fish samples were positive for non-O157 STEC. CONCLUSIONS: STEC is prevalent in seafoods in India, and non-O157 serotype is more common. SIGNIFICANCE AND IMPACT OF THE STUDY: Seafood could be a vehicle for transmission of STEC even in tropical countries.  相似文献   

20.
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号