首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propylthiouracil (PTU) is a thioamide drug used clinically to inhibit thyroid hormone production. However, PTU is associated with some side effects in different organs. In the present study, the acute and direct effects of PTU on testosterone production in rat Leydig cells were investigated. Leydig cells were isolated from rat testes, and an investigation was performed on the effects of PTU on basal and evoked-testosterone release, the functions of steroidogenic enzymes, including protein expression of cytochrome P450 side-chain cleavage enzyme (P450(scc)) and mRNA expression of the steroidogenic acute regulatory protein (StAR). Rat Leydig cells were challenged with hCG, forskolin, and 8-bromo-cAMP to stimulate testosterone release. PTU inhibited both basal and evoked-testosterone release. To study the effects of PTU on steroidogenesis, steroidogenic precursor-stimulated testosterone release was examined. PTU inhibited pregnenolone production (i.e., it diminished the function of P450(scc) in Leydig cells). In addition to inhibiting hormone secretion, PTU also regulated steroidogenesis by diminishing mRNA expression of StAR. These results suggest that PTU acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450(scc) function and StAR expression.  相似文献   

2.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

3.
The steroidogenic acute regulatory protein (StAR) is essential for the regulated production of steroid hormones, mediating the translocation of intracellular cholesterol to the inner mitochondrial membrane where steroidogenesis begins. Steroidogenic cells lacking StAR have impaired steroidogenesis and progressively accumulate lipid, ultimately causing cytopathic changes and deterioration of steroidogenic capacity. Developmental studies of StAR knockout (KO) mice have correlated gonadal lipid deposits with puberty, suggesting that trophic hormones contribute to this lipid accumulation. To delineate the role of gonadotropins in this process, we examined double mutant mice deficient in both StAR and gonadotropins [StAR KO/hpg (hypogonadal)]. Lipid accumulation was ameliorated considerably in StAR KO/hpg mice but was restored by treatment with exogenous gonadotropins, directly linking trophic hormones with gonadal lipid accumulation. To define the relative roles of exogenous vs. endogenous cholesterol in the lipid accumulation, we also examined mice lacking both StAR and apolipoprotein A-I (StAR KO/Apo A-I KO). Steroidogenic tissues of StAR KO/Apo A-I KO mice had markedly decreased lipid deposits, supporting the predominant role of high-density lipoprotein-derived cholesterol in the lipid accumulation caused by StAR deficiency. Finally, we used electron microscopy to compare mitochondrial ultrastructure in StAR KO and cholesterol side-chain cleavage enzyme (Cyp11a1) KO mice; despite comparable lipid accumulation within adrenocortical cells, the effects of StAR deficiency and Cyp11a1 deficiency on mitochondrial ultrastructure were markedly different. These findings extend our understanding of steroidogenic cell dysfunction in StAR KO mice and highlight key roles of trophic hormones and high-density lipoprotein-derived cholesterol in lipid deposits within StAR-deficient steroidogenic cells.  相似文献   

4.
5.
Salinomycin is used as an antibiotic in animal husbandry. Its implication in cancer therapy has recently been proposed. Present study evaluated the toxic effects of Salinomycin on male reproductive system of mice. Doses of 1, 3 or 5 mg/kg of Salinomycin were administered daily for 28 days. Half of the mice were sacrificed after 24 h of the last treatment and other half were sacrificed 28 days after withdrawal of treatment. Effects of SAL on body and reproductive organ weights were studied. Histoarchitecture of testis and epididymis was evaluated along with ultrastructural changes in Leydig cells. Serum and testicular testosterone and luteinizing hormones were estimated. Superoxide dismutase, reduced glutathione, lipid peroxidation, catalase and lactate dehydrogenase activities were measured. Spermatozoa count, morphology, motility and fertility were evaluated. Expression patterns of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage proteins (CYP11A1) were assessed by Western blotting. Salinomycin treatment was lethal to few mice and retarded body growth in others with decreased weight of testes and seminal vesicles in a dose dependent manner. Seminiferous tubules in testes were disrupted and the epithelium of epididymis showed frequent occurrence of vacuolization and necrosis. Leydig cells showed hypertrophied cytoplasm with shrunken nuclei, condensed mitochondria, proliferated endoplasmic reticulum and increased number of lipid droplets. Salinomycin decreased motility and spermatozoa count with increased number of abnormal spermatozoa leading to infertility. The testosterone and luteinizing hormone levels were decreased in testis but increased in serum at higher doses. Depletion of superoxide dismutase and reduced glutathione with increased lipid peroxidation in both testis and epididymis indicated generation of oxidative stress. Suppressed expression of StAR and CYP11A1 proteins indicates inhibition of steroidogenesis. Spermatogenesis was however observed in testis 28 days after Salinomycin withdrawal. The results indicate reversible dose-dependent adverse effects of Salinomycin on male reproductive system of mice.  相似文献   

6.
7.
Steroidogenic acute regulatory protein (StAR) is essential for adrenal and gonadal steroidogenesis, stimulating the translocation of cholesterol to the inner mitochondrial membrane where steroidogenesis commences. StAR mutations in humans cause congenital lipoid adrenal hyperplasia (lipoid CAH), an autosomal recessive condition with severe deficiencies of all classes of steroid hormones. We previously described StAR knockout mice that mimic many features of lipoid CAH patients. By keeping StAR knockout mice alive with corticosteroid replacement, we now examine the temporal effects of StAR deficiency on the structure and function of steroidogenic tissues. The adrenal glands, affected most severely at birth, exhibited progressive increases in lipid deposits with aging. The testes of newborn StAR knockout mice contained scattered lipid deposits in the interstitial region, presumably in remnants of fetal Leydig cells. By 8 weeks of age, the interstitial lipid deposits worsened considerably and were associated with Leydig cell hyperplasia. Despite these changes, germ cells in the seminiferous tubules appeared intact histologically, suggesting that the StAR knockout mice retained some capacity for androgen biosynthesis. Sperm maturation was delayed, and the germ cells exhibited histological features of apoptosis, consistent with suboptimal androgen production. Immediately after birth, the ovaries of StAR knockout mice appeared normal. After the time of normal puberty, however, prominent lipid deposits accumulated in the interstitial region, accompanied by marked luteinization of stromal cells and incomplete follicular maturation that ultimately culminated in premature ovarian failure. These studies provide the first systematic evaluation of the developmental consequences of StAR deficiency in the various steroidogenic organs.  相似文献   

8.
9.
Knockout (KO) mice lacking the orphan nuclear receptor steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a compound endocrine phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothalamic nucleus. To inactivate a conditional SF-1 allele in the gonads, we targeted the expression of Cre recombinase with a knock-in allele of the anti-Müllerian hormone type 2 receptor locus. In testes, Cre was expressed in Leydig cells. The testes of adult gonad-specific SF-1 KO mice remained at the level of the bladder and were markedly hypoplastic, due at least partly to impaired spermatogenesis. Histological abnormalities of the testes were seen from early developmental stages and were associated with markedly decreased Leydig cell expression of two essential components of testosterone biosynthesis, Cyp11a and the steroidogenic acute regulatory protein. In females, the anti-Müllerian hormone type 2 receptor-Cre allele directed Cre expression to granulosa cells. Although wild-type and SF-1 KO ovaries were indistinguishable during embryogenesis and at birth, adult females were sterile and their ovaries lacked corpora lutea and contained hemorrhagic cysts resembling those in estrogen receptor alpha and aromatase KO mice. Collectively, these studies establish definitively that SF-1 expression in the gonads is essential for normal reproductive development and function.  相似文献   

10.
Cordycepin, a pure compound of Cordyceps sinensis (CS), is known as an adenosine analog. We have found that CS stimulated Leydig cell steroidogenesis. Here we investigated the in vivo and in vitro effects of cordycepin in primary mouse Leydig cell steroidogenesis. The results indicate that cordycepin increased the plasma testosterone concentration. Cordycepin also stimulated in vitro mouse Leydig cell testosterone production in dose- and time-dependent manners. We further observed that cordycepin regulated the mRNA expression of the A1, A2a, A2b, and A3 adenosine receptors in the mouse Leydig cells, and that antagonists of A1, A2a, and A3 suppressed testosterone production 20-50% testosterone production. Furthermore, Rp-cAMPS (cAMP antagonist) and Protein Kinase A (PKA) inhibitors (H89 and PKI) significantly decreased cordycepin-induced testosterone production, indicating that the PKA-cAMP signal pathway was activated by cordycepin through adenosine receptors. Moreover, cordycepin induced StAR protein expression, and H89 suppressed cordycepin-induced steroidogenic acute regulatory (StAR) protein expression. Conclusively, cordycepin associated with adenosine receptors to activate cAMP-PKA-StAR pathway and steroidogenesis in the mouse Leydig cells.  相似文献   

11.
Otani M  Kogo M  Furukawa S  Wakisaka S  Maeda T 《Cytokine》2012,57(2):238-244
CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the new adipokine, CTRP3, in the reproductive system. CTRP3 was specifically expressed in interstitial Leydig cells, where testosterone is produced, in the adult mouse testis. CTRP3 increased testosterone production by TM3 mouse Leydig cells in a dose-dependent manner. The increased testosterone production was linked to upregulation of steroidogenic proteins expression, such as steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage cytochrome P450 (P450scc). Moreover, increases in intracellular cyclic AMP (cAMP) concentrations and the phosphorylation of cAMP-response element binding protein (CREB) in CTRP3-stimulated TM3 Leydig cells were observed. Inhibition of this signaling pathway by a specific protein kinase A (PKA) inhibitor, H89, blocked testosterone production in CTRP3-stimulated Leydig cells, suggesting that the stimulatory effect of CTRP3 on testosterone production is associated with activation of the cAMP/PKA signaling pathway. Thus, our results demonstrate a physiological role for CTRP3 in testicular steroidogenesis and provide novel insights in the intracellular mechanisms activated by this protein.  相似文献   

12.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.  相似文献   

13.
ABSTRACT: BACKGROUND: microRNAs (miRNAs) are shown to be involved in the regulation of circadian clock. However, it remains largely unknown whether miRNAs can regulate the core clock genes (Clock and Bmal1). RESULTS: In this study, we found that mir-142-3p directly targeted the 3'UTR of human BMAL1 and mouse Bmal1. The over-expression (in 293ET and NIH3T3 cells) and knockdown (in U87MG cells) of mir-142-3p reduced and up-regulated the Bmal1/BMAL1 mRNA and protein levels, respectively. Moreover, the expression level of mir-142-3p oscillated in serum-shocked NIH3T3 cells and the results of ChIP and luciferase reporter assays suggested that the expression of mir-142-3p was directly controlled by CLOCK/BMAL1 heterodimers in NIH3T3 cells. CONCLUSIONS: Our study demonstrates that mir-142-3p can directly target the 3'UTR of Bmal1. In addition, the expression of mir-142-3p is controlled by CLOCK/BMAL1 heterodimers, suggesting a potential negative feedback loop consisting of the miRNAs and the core clock genes. These findings open new perspective for studying the molecular mechanism of circadian clock.  相似文献   

14.
15.
Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1) was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2) were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2). While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10) nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.  相似文献   

16.
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis-specific gonadotropin-regulated RNA helicase that is present in Leydig cells (LCs) and germ cells and is essential for spermatid development and completion of spermatogenesis. Normal basal levels of testosterone in serum and LCs were observed in GRTH null (GRTH(-/-)) mice. However, testosterone production was enhanced in LCs of GRTH(-/-) mice compared with WT mice by both in vivo and in vitro human chorionic gonadotropin stimulation. LCs of GRTH(-/-) mice had swollen mitochondria with a significantly increased cholesterol content in the inner mitochondrial membrane. Basal protein levels of SREBP2, HMG-CoA reductase, and steroidogenic acute regulatory protein (StAR; a protein that transports cholesterol to the inner mitochondrial membrane) were markedly increased in LCs of GRTH(-/-) mice compared with WT mice. Gonadotropin stimulation caused an increase in StAR mRNA levels and protein expression in GRTH(-/-) mice versus WT mice, with no further increase in SREBP2 and down-regulation of HMG-CoA reductase protein. The half-life of StAR mRNA was significantly increased in GRTH(-/-) mice. Moreover, association of StAR mRNA with GRTH protein was observed in WT mice. Human chorionic gonadotropin increased GRTH gene expression and its associated StAR protein at cytoplasmic sites. Taken together, these findings indicate that, through its negative role in StAR message stability, GRTH regulates cholesterol availability at the mitochondrial level. The finding of an inhibitory action of GRTH associated with gonadotropin-mediated steroidogenesis has provided insights into a novel negative autocrine molecular control mechanism of this helicase in the regulation of steroid production in the male.  相似文献   

17.
18.
Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells   总被引:7,自引:0,他引:7  
It has been well known that reactive oxygen species (ROS) are produced in the steroidogenic pathway and spermatozoa. H2O2, one of ROS produced by spermatozoa, appears to be a primary toxic agent. In the present study, we examined the effects of H2O2 on the basal and evoked-testosterone release from primary Leydig cells, the protein expressions of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein were also investigated. Our preparation was found to contain approximately 87% Leydig cells and very few macrophages. The results demonstrated that H2O2 (>1 x 10(-4) M) significantly inhibited the basal and hCG-stimulated testosterone release. H2O2 abolished forskolin- or 8-Br-cAMP-evoked testosterone release. In the presence of pregnenolone, progesterone, or androstenedione, the inhibitory effect of H2O2 on testosterone release was prevented. H2O2 also inhibited pregnenolone production in the presence of trilostane (an inhibitor of 3beta-hydroxysteroid dehydrogenase), therefore diminished the activity of P450scc in Leydig cells. In addition to the inhibition of hormone secretion, H2O2 also regulated steroidogenesis by diminishing protein expression of StAR. These results suggest that H2O2 acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450scc activity and StAR protein expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号