首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of modest hypothermia on oxygen consumption (VO2) were studied at various levels of oxygen delivery (DO2) in six sheep. Each animal was placed on cardiopulmonary bypass by extrathoracic cannulations. DO2 was varied by changing blood flow through an extracorporeal circuit. VO2 was measured spirometrically across a membrane lung. VO2 was initially measured at various levels of DO2 at normothermic temperatures (39 degrees C). The animals were then cooled to 33 degrees C. DO2 was varied, and the corresponding VO2's were determined. The data at both temperatures demonstrated the biphasic relationship of VO2 to various levels of DO2. A critical level of DO2 (DO2 crit) was defined to reflect the transition area between the dependent and independent portions of the consumption-delivery curve. The average baseline VO2's on the delivery independent portion of the curve were calculated to be 5.33 and 3.17 ml O2.kg-1.min-1 at 39 and 33 degrees C, respectively (P less than 0.001). The corresponding DO2 crit's were 6.17 and 4.57 ml O2.kg-1.min-1 (P less than 0.05). The oxygen extraction ratios at DO2 crit for each of these temperatures did not differ significantly. We conclude that hypothermia, by lowering baseline VO2, reduces DO2 crit. Hypothermia may therefore reduce or eliminate the anaerobic metabolism and subsequent acidosis that would otherwise occur during normothermia at low levels of DO2.  相似文献   

2.
Oxygen delivery and utilization in hypothermic dogs   总被引:7,自引:0,他引:7  
Hypothermia produces a decrease in metabolic rate that may be beneficial under conditions of reduced O2 delivery (Do2). Another effect of hypothermia is to increase the affinity of hemoglobin for O2, which can adversely affect the release of O2 to the tissues. To determine the overall effect of hypothermia on the ability of the peripheral tissues to extract O2 from blood, we compared the response to hypoxemia of hypothermic dogs (n = 8) and of normothermic controls (n = 8). The animals were anesthetized, mechanically ventilated, and paralyzed to prevent shivering. The inspired concentration of O2 was progressively reduced until the dogs died. The core temperatures of the control and hypothermic dogs were 37.7 +/- 0.3 and 30.5 +/- 0.1 degree C, respectively (P less than 0.01). The O2 consumption (VO2) of the control dogs was significantly greater than that of the hypothermic dogs (P less than 0.05), being 4.7 +/- 0.4 and 3.2 +/- 0.3 ml X min-1 X kg-1, respectively. Hypothermia produced a left shift of the oxyhemoglobin dissociation curve (ODC) to a PO2 at which hemoglobin is half-saturated with O2 of 19.8 +/- 0.7 Torr (control = 32.4 +/- 0.7 Torr, P less than 0.01). The O2 delivery at which the VO2 becomes supply dependent (DO2crit) was 8.5 ml X min-1 X kg-1 for control and 6.2 ml X min-1 X kg-1 for hypothermia. The hypothermic dogs maintained their base-line VO2's at lower arterial PO2's than control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
As systemic delivery of O2 (QO2 = QT X CaO2) is reduced during progressive hemorrhage, the O2 extraction ratio [(CaO2 - CVO2)/CaO2] increases until a critical delivery is reached below which O2 uptake (VO2) becomes limited by delivery (O2 supply dependence). When tissue metabolic activity and O2 demand are increased or reduced, the critical QO2 required to maintain VO2 should rise or fall accordingly, unless other changes in the distribution of a limited QO2 precipitate the onset of O2 supply dependence at a different critical extraction ratio. We compared the critical QO2 and critical extraction ratio in 23 normothermic (38 degrees C), hyperthermic (41 degrees C), or hypothermic (34 decrees C) dogs during stepwise reduction in delivery produced by bleeding, as arterial O2 content was maintained. Dogs were anesthetized, paralyzed, and mechanically ventilated. Hypothermia reduced whole-body VO2 by 31%, whereas hyperthermia increased VO2 by 20%. The critical QO2 was significantly reduced during hypothermia (5.6 +/- 0.95 ml.min-1.kg-1) (P less than 0.05) and increased during hyperthermia (8.9 +/- 1.1) (P approximately equal to 0.06) compared with normothermic controls (7.4 +/- 1.2). The extraction ratio at the onset of supply dependency was significantly increased in hyperthermia (0.76 +/- 0.05) compared with hypothermia (0.65 +/- 0.10) (P less than 0.05), and the normothermic critical extraction was 0.71 +/- 0.1. These results suggest that higher body temperatures are associated with an improved ability to maintain a VO2 independent of QO2, since a higher fraction of the delivered O2 can be extracted before the onset of O2 supply dependence, relative to lower body temperatures.  相似文献   

4.
Although hypothermia is known to alter neuronal control of circulation, it has been uncertain whether clinically used hypothermia (moderate hypothermia) affects in situ cardiac sympathetic nerve endings. We examined the effects of moderate hypothermia on cardiac sympathetic nerve ending function in anesthetized cats. By use of a cardiac dialysis technique, we implanted dialysis probes in the midwall of the left ventricle and monitored dialysate norepinephrine (NE) levels as an index of NE output from cardiac sympathetic nerve endings. Hypothermia (27.0+/-0.5 degrees C) induced decreases in dialysate NE levels. Dialysate NE levels did not return to the control level at normothermia after rewarming. Dialysate NE response to inferior vena cava occlusion was attenuated at hypothermia but restored at normothermia after rewarming. Dialysate NE response to high K(+) (100 mM) was attenuated at hypothermia and was not restored at normothermia after rewarming. Hypothermia induced increases in dialysate dihydroxyphenylglycol (DHPG) levels. There were no differences in desipramine (neuronal NE uptake blocker, 10 microM) induced increment in dialysate NE level among control, hypothermia, and normothermia after rewarming. However, hypothermia induced an increase in DHPG/NE ratio. These data suggest that hypothermia impairs vesicle NE mobilization rather than membrane NE uptake. We conclude that moderate hypothermia suppresses exocytotic NE release via central mediated reflex and regional depolarization.  相似文献   

5.
To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.  相似文献   

6.
Renal O2 consumption during progressive hemorrhage   总被引:1,自引:0,他引:1  
Most mammalian tissues regulate O2 utilization such that O2 consumption (VO2) is relatively constant at O2 delivery (DO2) higher than a critical value (DO2c). We studied the relationship between VO2 and DO2 of kidney and whole body during graded progressive exsanguination. The relationship between whole body VO2 and DO2 was biphasic, and whole body VO2 decreased by 5.6 +/- 14.4% (P = NS) from the initial value to the value nearest whole body DO2c. Kidney DO2 decreased in direct proportion to whole body DO2 such that the average R2 value describing the linear regression of kidney DO2 vs. whole body DO2 was 0.94 +/- 0.02. The relationship between kidney, like whole body, VO2 and DO2 appeared biphasic; however, kidney VO2 decreased by 63.3 +/- 10.4% (P less than 0.0001) from the initial value to the value nearest kidney DO2c. Renal O2 extraction ratio was relatively constant over a wide range of kidney DO2, whereas whole body O2 extraction ratio increased progressively at all whole body DO2 values as whole body DO2 decreased. However, final values of O2 extraction ratio were indistinguishable for whole body (0.86 +/- 0.1) and kidney (0.86 +/- 0.06) (P = NS). We conclude that the pattern of kidney and whole body VO2 response to decreasing DO2 differs during hemorrhage, particularly in the range of DO2 normally associated with tissue wellness.  相似文献   

7.
Acute hypoxia (AH) reduces maximal O2 consumption (VO2 max), but after acclimatization, and despite increases in both hemoglobin concentration and arterial O2 saturation that can normalize arterial O2 concentration ([O2]), VO2 max remains low. To determine why, seven lowlanders were studied at VO2 max (cycle ergometry) at sea level (SL), after 9-10 wk at 5,260 m [chronic hypoxia (CH)], and 6 mo later at SL in AH (FiO2 = 0.105) equivalent to 5,260 m. Pulmonary and leg indexes of O2 transport were measured in each condition. Both cardiac output and leg blood flow were reduced by approximately 15% in both AH and CH (P < 0.05). At maximal exercise, arterial [O2] in AH was 31% lower than at SL (P < 0.05), whereas in CH it was the same as at SL due to both polycythemia and hyperventilation. O2 extraction by the legs, however, remained at SL values in both AH and CH. Although at both SL and in AH, 76% of the cardiac output perfused the legs, in CH the legs received only 67%. Pulmonary VO2 max (4.1 +/- 0.3 l/min at SL) fell to 2.2 +/- 0.1 l/min in AH (P < 0.05) and was only 2.4 +/- 0.2 l/min in CH (P < 0.05). These data suggest that the failure to recover VO2 max after acclimatization despite normalization of arterial [O2] is explained by two circulatory effects of altitude: 1) failure of cardiac output to normalize and 2) preferential redistribution of cardiac output to nonexercising tissues. Oxygen transport from blood to muscle mitochondria, on the other hand, appears unaffected by CH.  相似文献   

8.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

9.
Whole-body O2 uptake (VO2) in rats was reported not to increase when total O2 transport (TOT = cardiac output X arterial O2 concentration) was increased above normal ranges when body temperature was kept at 38 degrees C (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 660-664, 1982). Similar experiments were performed to see if hypothermic rats at 34 degrees C would increase VO2 with an increased TOT in an effort to generate heat. Anesthetized rats were ventilated with 9 or 12% O2 (hypoxia), room air (normoxia), and O2 (hyperoxia) to vary TOT from 52.6 to 6.6 ml X kg-1 X min-1. VO2 was measured in a closed-circuit, double servospirometer system. Although VO2 was significantly lower at 34 degrees C than the values previously found at 38 degrees C with normoxia and hyperoxia, there was no increase with increasing values of TOT. In spite of a lower plateau value of VO2 at 34 degrees C, the critical value of TOT below which VO2 could not be maintained was nearly the same as at 38 degrees C (22 ml X kg-1 X min-1). The reason for this was that O2 was less completely extracted as TOT was lowered below the critical value in the hypothermic animal. Some of the difficulty in extracting O2 at the tissues was probably due to the decrease in P50 (PO2 at 50% saturation) that occurs with decreased body temperature.  相似文献   

10.
Hepatic O2 consumption (VO2) remains relatively constant (O2 supply independent) as O2 delivery (DO2) progressively decreases, until a critical DO2 (DO2c) is reached below which hepatic VO2 also decreases (O2 supply dependence). Whether this decrease in VO2 represents an adaptive reduction in O2 demand or a manifestation of tissue dysoxia, i.e., O2 supply that is inadequate to support O2 demand, is unknown. We tested the hypothesis that the decrease in hepatic VO2 during O2 supply dependence represents dysoxia by evaluating hepatic mitochondrial NAD redox state during O2 supply independence and dependence induced by progressive hemorrhage in six pentobarbital-anesthetized dogs. Hepatic mitochondrial NAD redox state was estimated by measuring hepatic venous beta-hydroxybutyrate-to-acetoacetate ratio (beta OHB/AcAc). The value of DO2c was 5.02 +/- 1.64 (SD) ml.100 g-1.min-1. The beta-hydroxybutyrate-to-acetoacetate ratio was constant until a DO2 value (3.03 +/- 1.08 ml.100 g-1.min-1) was reached (P = 0.05 vs. DO2c) and then increased linearly. Peak liver lactate extraction ratio was 15.2 +/- 14.1%, occurring at a DO2 of 5.48 +/- 2.54 ml.100 g-1.min-1 (P = NS vs. DO2c). Our data support the hypothesis that the decrease in VO2 during O2 supply dependence represents tissue dysoxia.  相似文献   

11.
Normovolemic polycythemia did not improve the ability of either resting muscle or gut to maintain O2 uptake (VO2) during severe hypoxia because of the adverse effects of increased viscosity on blood flow to those regions. The present study tested whether increased metabolic demand would promote vasodilation sufficiently to overcome those effects. We measured whole body, muscle, and gut blood flow, O2 extraction, and VO2 in anesthetized dogs after increasing hematocrit to 65% and raising O2 demand with 2,4-dinitrophenol (n = 8). We also tested whether regional denervation (n = 8) and hypervolemia (n = 6) affected these responses. After raising hematocrit and metabolism, the dogs were ventilated with air, with 9% O2-91% N2, and again with air for 30-min periods. Reduced blood flow and increased O2 demand, caused by increased blood viscosity and 2,4-dinitrophenol, respectively, increased O2 extraction so that muscle VO2 was nearly supply limited in normoxia. Denervation showed that vasoconstriction had increased in gut and muscle with hypoxia onset but this was overcome after 15 min. By then, muscle was receiving a major portion of cardiac output, whereas gut showed little change. With hypervolemia cardiac output increased in hypoxia but neither gut nor muscle increased blood flow in those experiments. Because regional and whole body VO2 fell in all groups during hypoxia to the same extent found earlier in normocythemic dogs, any real benefit of polycythemia under the conditions of these experiments was dubious at best.  相似文献   

12.
O(2) transport during maximal exercise was studied in rats bred for extremes of exercise endurance, to determine whether maximal O(2) uptake (VO(2 max)) was different in high- (HCR) and low-capacity runners (LCR) and, if so, which were the phenotypes responsible for the difference. VO(2 max) was determined in five HCR and six LCR female rats by use of a progressive treadmill exercise protocol at inspired PO(2) of approximately 145 (normoxia) and approximately 70 Torr (hypoxia). Normoxic VO(2 max) (in ml. min(-1). kg(-1)) was 64.4 +/- 0.4 and 57.6 +/- 1.5 (P < 0.05), whereas VO(2 max) in hypoxia was 42.7 +/- 0.8 and 35.3 +/- 1.5 (P < 0.05) in HCR and LCR, respectively. Lack of significant differences between HCR and LCR in alveolar ventilation, alveolar-to-arterial PO(2) difference, or lung O(2) diffusing capacity indicated that neither ventilation nor efficacy of gas exchange contributed to the difference in VO(2 max) between groups. Maximal rate of blood O(2) convection (cardiac output times arterial blood O(2) content) was also similar in both groups. The major difference observed was in capillary-to-tissue O(2) transfer: both the O(2) extraction ratio (0.81 +/- 0.002 in HCR, 0.74 +/- 0.009 in LCR, P < 0.001) and the tissue diffusion capacity (1.18 +/- 0.09 in HCR and 0.92 +/- 0.05 ml. min(-1). kg(-1). Torr(-1) in LCR, P < 0.01) were significantly higher in HCR. The data indicate that selective breeding for exercise endurance resulted in higher VO(2 max) mostly associated with a higher transfer of O(2) at the tissue level.  相似文献   

13.
Systemic and intestinal limits of O2 extraction in the dog   总被引:3,自引:0,他引:3  
When systemic delivery of O2 (QO2 = QT X CaO2, where QT is cardiac output and CaO2 is arterial O2 content) is reduced by bleeding, the systemic O2 extraction ratio [ER = (CaO2 - CVO2)/CaO2, where CVO2 is venous O2 content] increases until a critical limit is reached below which O2 uptake (VO2) becomes limited by O2 delivery. During hypovolemia, reflex increases in mesenteric arterial tone may preferentially reduce gut blood flow so that the onset of O2 supply dependence occurs in the gut before other regions. We compared the critical O2 delivery (QO2c) and critical extraction ratio (ERc) of whole body and an isolated segment (30-50 g) of small bowel in seven anesthetized paralyzed dogs ventilated with room air. Systemic QO2 was reduced in stages by controlled hemorrhage as arterial O2 content was maintained, and systemic and gut VO2 and QO2 were measured at each stage. Body QO2c was 7.9 +/- 1.9 ml X kg-1 X min-1 (ERc = 0.69 +/- 0.12), whereas gut O2 supply dependency occurred when gut QO2 was 34.3 +/- 11.3 ml X min-1 X kg gut wt-1 (ERc = 0.63 +/- 0.09). O2 supply dependency in the gut occurred at a higher systemic QO2 (9.7 +/- 2.7) than whole-body QO2c (P less than 0.05). The extraction ratio at the final stage (maximal ER) was less in the gut (0.80 +/- 0.05) than whole body (0.87 +/- 0.06). Thus during reductions in systemic QO2, gut VO2 was maintained by increases in gut extraction of O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and the NO donor sodium nitroprusside (SNP) on whole body O2 consumption (VO2) were assessed in 16 dogs anesthetized with fentanyl or isoflurane. Cardiac output (CO) and mean arterial pressure (MAP) were measured with standard methods and were used to calculate VO2 and systemic vascular resistance (SVR). Data were obtained in each dog under the following conditions: 1) Control 1, 2) SNP (30 microg. kg-1. min-1 iv) 3) Control 2, 4) L-NAME (10 mg/kg iv), and 5) SNP and adenosine (30 and 600 microg. kg-1. min-1 iv, respectively) after L-NAME. SNP reduced MAP by 29 +/- 3% and SVR by 47 +/- 3%, while it increased CO by 39 +/- 9%. L-NAME had opposite effects; it increased MAP and SVR by 24 +/- 4% and 103 +/- 11%, respectively, and it decreased CO by 37 +/- 3%. Neither agent changed VO2 from the baseline value of 4.3 +/- 0.2 ml. min-1. kg-1, since the changes in CO were offset by changes in the arteriovenous O2 difference. Both SNP and adenosine returned CO to pre-L-NAME values, but VO2 was unaffected. We conclude that 1) basally released endogenous NO had a tonic systemic vasodilator effect, but it had no influence on VO2; 2) SNP did not alter VO2 before or after inhibition of endogenous NO production; 3) the inability of L-NAME to increase VO2 was not because CO, i.e., O2 supply, was reduced below the critical level.  相似文献   

15.
Minimum acceptable O2 delivery (DO2) during extracorporeal membrane oxygenation (ECMO) remains to be defined in a newborn primate model. The right atrium, carotid artery, and femoral artery were cannulated, and the ductus arteriosus, aorta, and pulmonary artery ligated in neonatal baboons (Papio cynocephalus) under a combination of ketamine, diazepam, and pancuronium. The internal jugular vein was also cannulated retrograde to the level of the occipital ridge. We measured hemoglobin, pH, arterial and venous PO2 (both from the pump circuit and from the cerebral venous site), serum lactate and bicarbonate concentrations, and pump flow, and we calculated hemoglobin saturations, (DO2), O2 consumption (VO2), systemic O2 extraction, and cerebral O2 extraction. Six baboons were studied during each of two phases of the experiment. In the first, flow rates were varied sequentially from 200 to 50 ml.kg-1.min-1 with saturation maximized. In the second, flow was maintained at 200 ml.kg-1.min-1 and saturation was reduced sequentially from 100 to 38%. VO2 fell significantly below baseline at a flow rate of 50 ml.kg-1.min-1 and a DO2 of 8 +/- 2 (SE) ml.kg-1.min-1 in phase 1 and at DO2 of 12 +/- 5 in phase 2. Both systemic and cerebral O2 extraction rose significantly at a flow of 100 ml.kg-1.min-1 and DO2 of 17 +/- 4 ml.kg-1.min-1 in phase 1, whereas neither rose with decreasing DO2 in phase 2. In fact, cerebral extraction fell significantly DO2 of 16 +/- 6 ml.kg-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

18.
With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.  相似文献   

19.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

20.
Patients with chronic obstructive pulmonary disease (COPD) usually stop exercise before reaching physiological limits in terms of O(2) delivery and extraction. A plateau in lower limb O(2) uptake (VO(2)) and blood flow occurs despite progression of the imposed workload during cycling in some patients with COPD, suggesting that maximal capacity to transport O(2) had been reached and that it had been extracted in the peripheral exercising muscles. This study addresses this observation. Symptom-limited incremental cycle exercise was performed by 14 men [62 +/- 11 (SD) yr] with severe COPD (forced expiratory volume in 1 s = 35 +/- 7% of predicted value). Leg blood flow was measured at each exercise step with a thermodilution catheter inserted in the femoral vein. This value was multiplied by two to account for both working legs (Q(LEGS)). Arterial and femoral venous blood was sampled at each exercise step to measure blood gases. Leg O(2) consumption (VO(2LEGS)) was calculated according to the Fick equation. Total body VO(2) (VO(2TOT)) was measured from expired gas analysis, and tidal volume (VT) and minute ventilation (VE) were derived from the flow signal. In eight patients, VO(2LEGS) kept increasing in parallel with VO(2TOT) as external work rate was increasing. In six subjects, a plateau in VO(2LEGS) and Q(LEGS) occurred during exercise (increment of <3% between 2 consecutive increasing workloads) despite the increase in workload and VO(2TOT) [corresponding mean was 110 +/- 38 ml (11 +/- 4%)]. These six patients also exhibited a plateau in O(2) extraction during exercise. Peak exercise work rate was higher in the eight patients without a plateau than in the six with a plateau (51 +/- 10 vs. 40 +/- 13 W, P = 0.043). VT, VE, and dyspnea were significantly greater at submaximal exercise in patients of the plateau group compared with those of the nonplateau group. These results show that, in some patients with COPD, blood flow directed to peripheral muscles and O(2) extraction during exercise may be limited. We speculate that redistribution of cardiac output and O(2) from the lower limb exercising muscles to the ventilatory muscles is a possible mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号