首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. An understanding of the links between life histories and responses to exploitation could provide the basis for predicting shifts in community structure by identifying susceptible species and linking life-history tactics with population dynamics.
2. We examined long-term trends in the abundance of species in the North Sea bottom-dwelling (demersal) fish community. Between 1925 & 1996 changes in species composition led to an increase in mean growth rate, while mean maximum size, age at maturity and size at maturity decreased. The demersal fish community was increasingly heavily fished during this period.
3. Trends in mean life-history characteristics of the community were linked to trends in abundance of component species. An approach based on phylogenetic comparisons was used to examine the differential effects of fishing on individual species with contrasting life histories.
4. Those species that decreased in abundance relative to their nearest relative, matured later at a greater size, grew more slowly towards a greater maximum size and had lower rates of potential population increase. The phylogenetically based analyses demonstrated that trends in community structure could be predicted from the differential responses of related species to fishing.
5. This is the first study to link exploitation responses of an entire community to the life histories of individual species. The results demonstrate that fishing has greater effects on slower growing, larger species with later maturity and lower rates of potential population increase. The comparative approach provides a basis for predicting structural change in other exploited communities.  相似文献   

2.
The relative importance of life-history variables to population growth rate (lambda) has substantial consequences for the study of life-history evolution and for the dynamics of biological populations. Using life-history data for 142 natural populations of mammals, we estimated the elasticity of lambda to changes in age at maturity (alpha), age at last reproduction (omega), juvenile survival (Pj), adult survival (Pa), and fertility (F). Elasticities were then used to quantify the relative importance of alpha, omega, Pj, Pa, and F to lambda and to test theoretical predictions regarding the relative influence on lambda of changes in life-history variables. Neither alpha nor any other single life-history variable had the largest relative influence on lambda in the majority of the populations, and this pattern did not change substantially when effects of phylogeny and body size were statistically removed. Empirical support for theoretical predictions was poor at best. However, analyses of elasticities on the basis of the magnitude (F) and onset (alpha) of reproduction revealed that alpha, followed by F, had the largest relative influence on lambda in populations characterized by early maturity and high reproductive rates, or when F/alpha > 0.60. When maturity was delayed and reproductive rates were low, or when F/alpha < 0.15, survival rates were overwhelmingly most influential, and reproductive parameters (alpha and F) had little relative influence on lambda. Population dynamic consequences of likely responses of biological populations to perturbations in life-history variables are examined, and predictions are made regarding the numerical dynamics of age-structured populations on the basis of values of the F/alpha ratio.  相似文献   

3.
A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.  相似文献   

4.
Sexual dimorphism in Odonata: age, size, and sex ratio at emergence   总被引:1,自引:0,他引:1  
Males and females of many organisms differ in important life-history and behavioral characters. Following a recent optimization analysis of sexually dimorphic life histories, we employed an odonate-like parameter set to identify patterns of life history and behavior to be expected in an odonate population. The default parameter magnitudes generated a smaller body size and shorter development time for males than for females, which resulted in a male-biased sex ratio. Whether population growth was density dependent or density independent, and whether development time was fixed or flexible had major impacts on life-history features. The model generated five general predictions for odonate systems. (1) For species with fixed development times, males and females should differ more in activity level, growth and mortality rates than for species with flexible life cycles. (2) In species with fixed development times, populations at high latitude or high altitude should be more active, emerge and reproduce at smaller size and have a more male-biased sex ratio than low latitude and low altitude populations. (3) In density-dependent populations, with density dependence mediated by activity-dependent mortality, higher predation rates should increase activity levels and reduce development time in species with flexible development times. (4) For species with flexible development times, in strongly density-dependent populations with density dependence mediated by mortality, activity levels should decrease and development times should increase at high prey abundance. (5) Males should be larger at emergence relative to females, and the sex ratio at emergence should be more female-biased in territorial than in non-territorial species. Existing empirical evidence concerning these predictions is generally sparse and equivocal; focused tests are clearly needed.  相似文献   

5.
Resource availability constrains the life history strategies available to organisms and may thereby limit population growth rates and productivity. We used this conceptual framework to explore the mechanisms driving recently reported negative relationships between fish productivity and dissolved organic carbon (DOC) concentrations in lakes. We studied populations of bluegill (Lepomis macrochirus) in a set of lakes with DOC concentrations ranging from 3 to 24 mg/L; previous work has demonstrated that primary and secondary productivity of food webs is negatively related to DOC concentration across this gradient. For each population, we quantified individual growth rate, age at maturity, age‐specific fecundity, maximum age, length‐weight and length‐egg size relationships, and other life history characteristics. We observed a strong negative relationship between maximum size and DOC concentration; for instance, fish reached masses of 150 to 260 g in low‐DOC lakes but <120 g in high‐DOC lakes. Relationships between fecundity and length, and between egg size and length, were constant across the DOC gradient. Because fish in high‐DOC lakes reached smaller sizes but had similar fecundity and egg size at a given size, their total lifetime fecundity was as much as two orders of magnitude lower than fish in low‐DOC lakes. High DOC concentrations appeared to constrain the range of bluegill life history strategies available; populations in high‐DOC lakes always had low initial growth rates and high ages at maturity, whereas populations in low‐DOC showed higher variability in these traits. This was also the case for the intrinsic rates of natural increase of these populations, which were always low at the high end of the DOC gradient. The potentially lower capacity for fish populations in high‐DOC lakes to recover from exploitation has clear implications for the sustainable management of recreational fisheries in the face of considerable spatial heterogeneity and ongoing temporal change in lake DOC concentrations.  相似文献   

6.
Understanding which life-history variables have the greatest influence on population growth rate has great ecological and conservation importance. Applying models of population regulation and demographic mechanisms can aid management and conservation of both wild and captive populations. By comparisons of sensitivity, elasticity, and life-table response analyses, we identified demographic processes that were most likely to produce changes in population size (via prospective analyses) and the traits that actually influenced population changes (via retrospective analyses) among sexes, zoological facilities, and generations of captive squirrel monkey populations (Saimiri sciureus). Variation in life-history traits occurs within each group analyzed. Those traits that vary the most include age at maturity, age at last reproduction, and fertility. Zoos with increasing population growth rates maintain earlier ages of maturity, later ages of last reproduction, high rates of juvenile and adult survival, and most importantly greater fertility, reflecting shorter inter-birth intervals. Using prospective analyses, juvenile and adult survivals were predicted to be demographic traits with the greatest effect on population growth. Surprisingly, and despite predictions, retrospective analyses revealed that fertility was the life-history characteristic trait that contributed the most to changes in population size.  相似文献   

7.
Abstract.  1. Life-history traits and density were assayed in seven populations of two sympatric species of wolf spider for three consecutive years. The goal of the study was to quantify population dynamics and its relation to spatial and temporal life-history variation.
2. Adult female body size and fecundity varied significantly, among field sites and among years, in both species. Female spiders of both species differed in mean relative reproductive effort among sites, but not among years. The size of offspring was invariable, with no significant differences due to site or year.
3. All populations of both species tended to either decrease or increase in density during a given year and this was tightly correlated with changes in prey consumption rates.
4. Since life-history patterns are determined primarily by selection, it is concluded that size at sexual maturity for females is phenotypically plastic and responds to changes in prey availability. Offspring size however is not plastic and it is likely that other selection forces have determined offspring size. Temporal fluctuations in population size are correlated over a large area relative to dispersal capabilities for these species and conservation efforts for invertebrates must take this into consideration.  相似文献   

8.
Correlations between genetic variation and life-history variables were obtained for 80 species of bony fishes as a means of testing the hypothesis that genetic variation is directly related to 1) opportunity for balancing selection, as indicated by fecundity, and 2) environmental variation, as indicated by capacity for population increase. Genetic data were taken from the literature, and data on longevity, age at maturity, egg size, body size, and lifetime fecundity were taken from the literature where available and were otherwise estimated from other variables. Average heterozygosity does not increase significantly with increasing fecundity. However, heterozygosity is significantly associated with short generation times, quick maturation, small maximum size, and small eggs. Thus, heterozygosity appears to increase on a demographic continuum toward maximum values in species that are most strongly selected for maximizing the intrinsic rate of increase. Such species are associated with less stable environments. Thus, the results indicate a predominate role for environmental variation in controlling genetic variation of bony fishes.  相似文献   

9.
Introduction of biological control agents to reduce the abundance of exotic invasive plant species is often considered necessary but risky. I used matrix projection models to investigate the current population dynamics of Clidemia hirta (Melastomataceae), an invasive shrub, in two rainforest stands on the island of Hawaii and to predict the efficacy of hypothetical biological control agents in reducing population growth rates. Stage-structured matrix models were parameterized with field data collected over 3 years from 2906 C. hirta plants in a recently invaded forest with an open overstory (Laupahoehoe) and 600 plants in a less recently invaded forest with a closed canopy (Waiakea). Asymptotic population growth rates (λ) for both populations in all years were greater than one, demonstrating that both populations were growing. Composite elasticities were high for the seedling life-history stage and fecundity, and near-term demographic elasticities suggested that changes in seedling survival would have the largest effect on population size in the short term. However, simulations showed that almost 100% of seedlings or new recruits produced per reproductive adult would have to be destroyed to cause populations to go locally extinct under current environmental conditions. Herbivores or pathogens that decrease survival across all vegetative stages by 12% at Waiakea and 64% at Laupahoehoe were projected to cause the populations to decline. Thus, biocontrol agents that reduce survival of multiple life-history stages rather than seed production should be pursued to control C. hirta in Hawaiian rainforests.  相似文献   

10.
The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline.  相似文献   

11.
Determining the effects of lifelong intake patterns on performance is challenging for many species, primarily because of methodological constraints. Here, we used a parthenogenetic insect (Carausius morosus) to determine the effects of limited and unlimited food availability across multiple life-history stages. Using a parthenogen allowed us to quantify intake by juvenile and adult females and to evaluate the morphological, physiological, and life-history responses to intake, all without the confounding influences of pair-housing, mating, and male behavior. In our study, growth rate prior to reproductive maturity was positively correlated with both adult and reproductive lifespans but negatively correlated with total lifespan. Food limitation had opposing effects on lifespan depending on when it was imposed, as it protracted development in juveniles but hastened death in adults. Food limitation also constrained reproduction regardless of when food was limited, although decreased fecundity was especially pronounced in individuals that were food-limited as late juveniles and adults. Additional carry-over effects of juvenile food limitation included smaller adult size and decreased body condition at the adult molt, but these effects were largely mitigated in insects that were switched to ad libitum feeding as late juveniles. Our data provide little support for the existence of a trade-off between longevity and fecundity, perhaps because these functions were fueled by different nutrient pools. However, insects that experienced a switch to the limited diet at reproductive maturity seem to have fueled egg production by drawing down body stores, thus providing some evidence for a life-history trade-off. Our results provide important insights into the effects of food limitation and indicate that performance is modulated by intake both within and across life-history stages.  相似文献   

12.
Thrond O. Haugen 《Oikos》2000,90(1):107-118
Mortality and growth rates were shown to influence maturation patterns in five populations of grayling ( Thymallus thymallus ) in central Norway. The populations share recent common ancestors as they derive from introductions performed in 1910, and they inhabit lakes with different environmental conditions (i.e. length of growth season, lake area and fishing pressure). Mortality rate (range of Z -values: 0.36–0.77) and growth pattern varied strongly among the populations. Mortality rates were negatively associated with population mean age at maturity ( r sp=−0.90), supporting life-history theory which predicts early maturation to be favoured under conditions with high adult mortalities. Maturation reaction norms differed significantly among the populations. Individuals from one population showed no maturation plasticity (all individuals matured at age three), whereas rapid growers were found to mature earlier than slow growers in the remaining four populations. Life-history theory is again supported as it predicts rapid growers to mature early due to high age-specific fecundity and short generation times. Given low mortality risks, slow growers are predicted to delay maturation in order to gain high first-time fecundity. In high-mortality systems all individuals are predicted to mature early. This theory is supported by the present data as populationwise maturation plasticity increased with decreasing mortality rates. In the population with no maturation plasticity the corresponding high mortality rates were probably due to high fishing pressures.  相似文献   

13.
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.  相似文献   

14.
The selective pressures involved in the evolution of semelparity and its associated life-history traits are largely unknown. We used species-level analyses, independent contrasts, and reconstruction of ancestral states to study the evolution of body length, fecundity, egg weight, gonadosomatic index, and parity (semelparity vs. degree of iteroparity) in females of 12 species of salmonid fishes. According to both species-level analysis and independent contrasts analysis, body length was positively correlated with fecundity, egg weight, and gonadosomatic index, and semelparous species exhibited a significantly steeper slope for the regression of egg weight on body length than did iteroparous species. Percent repeat breeding (degree of iteroparity) was negatively correlated with gonadosomatic index using independent contrasts analysis. Semelparous species had significantly larger eggs by species-level analysis, and the egg weight contrast for the branch on which semelparity was inferred to have originated was significantly larger than the other egg weight contrasts, corresponding to a remarkable increase in egg weight. Reconstruction of ancestral states showed that egg weight and body length apparently increased with the origin of semelparity, but fecundity and gonadosomatic index remained more or less constant or decreased. Thus, the strong evolutionary linkages between body size, fecundity, and gonadosomatic index were broken during the transition from iteroparity to semelparity. These findings suggest that long-distance migrations, which increase adult mortality between breeding episodes, may have been necessary for the origin of semelparity in Pacific salmon, but that increased egg weight, leading to increased juvenile survivorship, was crucial in driving the transition. Our analyses support the life-history hypotheses that a lower degree of repeat breeding is linked to higher reproductive investment per breeding episode, and that semelparity evolves under a combination of relatively high juvenile survivorship and relatively low adult survivorship.  相似文献   

15.
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density. We hypothesized that if density-dependent effects were manifested principally through intraspecific competition, body condition and fecundity of females would be lower in an area of high population density than in a low-density area. Thus, we collected data on physical condition and rates of pregnancy in each experimental population. Our manipulative experiment indicated that density-dependent feedbacks affected physical condition and reproduction of adult female elk. Age-specific pregnancy rates were lower in the high-density area, although there were no differences in pregnancy of yearlings or in age at peak reproduction between areas. Age-specific rates of pregnancy began to diverge at 2 years of age between the two populations and peaked at 6 years old. Pregnancy rates were most affected by body condition and mass, although successful reproduction the previous year also reduced pregnancy rates during the current year. Our results indicated that while holding effects of winter constant, density-dependent mechanisms had a much greater effect on physical condition and fecundity than density-independent factors (e.g., precipitation and temperature). Moreover, our results demonstrated effects of differing nutrition resulting from population density during summer on body condition and reproduction. Thus, summer is a critical period for accumulation of body stores to buffer animals against winter; more emphasis should be placed on the role of spring and summer nutrition on population regulation in large, northern herbivores.  相似文献   

16.
Several epidemiological models predict a positive relationship between host population density and abundance of directly transmitted macroparasites. Here, we generalize these, and test the prediction by a comparative study. We used data on communities of gastrointestinal strongylid nematodes from 19 mammalian species, representing examination of 6670 individual hosts. We studied both the average abundance of all strongylid nematodes within a host species, and the two components of abundance, prevalence and intensity. The effects of host body weight, diet, fecundity and age at maturity and parasite body size were controlled for directly, and the phylogenetically independent contrast method was used to control for confounding factors more generally. Host population density and average parasite abundance were strongly positively correlated within mammalian taxa, and across all species when the effects of host body weight were controlled for. Controlling for other variables did not change this. Even when looking at single parasite species occurring in several host species, abundance was highest in the host species with the highest population density. Prevalence and intensity showed similar patterns. These patterns provide the first macroecological evidence consistent with the prediction that transmission rates depend on host population density in natural parasite communities.  相似文献   

17.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

18.
19.
Four of the most common species of skate (Rajidae) were studied off eastern Canada to determine if their reproductive characteristics were linked to their population trajectories. The fecundity of the winter skate Leucoraja ocellata , the little skate Leucoraja erinacea , the thorny skate Amblyraja radiata and the smooth skate Malacoraja senta averaged between 41 and 56 egg cases per year for each species. For all species but L. ocellata , males matured at larger sizes and at later ages than females. Theoretical rates of population increase for non-equilibrium populations of L. ocellata ( c . 0·07), M. senta ( c . 0·14) and L. erinacea and A. radiata ( c . 0·20) were low compared to most fishes, indicating that north-west Atlantic skates are intrinsically unproductive, yet are theoretically capable of supporting low-level fisheries. Nevertheless, the results of 36 years of research surveys indicate that the abundance of mature L. ocellata , A. radiata and M. senta all decreased by >90% since 1970, indicating that past fishing mortality (both directed and undirected) has outstripped the net productivity of the skate populations on the eastern Scotian Shelf. The relationship between maximum age ( t max) and age of maturity ( t mat) was a better predictor of population growth rate than was body size, with the species exhibiting the highest ratios of t mat : t max ( L. ocellata = 0·68, M. senta = 0·66) having the lowest predicted population growth rates. L. ocellata appears to have the lowest productivity and has experienced the greatest population decline, thus raising concerns over its future status.  相似文献   

20.
Abstract: Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:cow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (Λ) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and Λ. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号