首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Abstract: LAN-1 is a human neuroblastoma cell line that, in the undifferentiated state, does not respond to membrane depolarization with an elevation of [Ca2+]i, monitored by fura-2 single-cell microfluorimetry. The exposure of LAN-1 cells to the differentiating agent retinoic acid induced the appearance of [Ca2+]i elevation elicited by 55 mM K+. Maitotoxin, a putative activator of voltage-sensitive Ca2+ channels, did not evoke an elevation of [Ca2+]i in undifferentiated LAN-1 cells, but produced a marked and sustained increase in [Ca2+]i when superfused in retinoic acid-treated cells. Both high K+- and maitotoxin-induced [Ca2+]i elevation in retinoic acid-differentiated LAN-1 cells was reversed by the lanthanide Gd3+, an inorganic Ca2+-entry blocker, and by the snail toxin ω-conotoxin GVIA, which interacts with the N sub-type of voltage-sensitive Ca2+ channels. In contrast, both Bay K 8644 and nimodipine, dihydropyridines that selectively activate or block, respectively, the L-channel sub-type, were completely ineffective. The tumor promoter phorbol 12-myristate 13-acetate (100 nM), a protein kinase C activator, inhibited the elevation of [Ca2+]i due to Ca2+ influx elicited by membrane depolarization. K+-induced [Ca2+]i elevation appeared 24 h after the addition of retinoic acid and reached the highest magnitude after 72 h. Furthermore, 8 days after the removal of the differentiating agent from the culture medium, the high K+-induced increase of [Ca2+]i was still present. In conclusion, the results of the present study demonstrated that retinoic acid-induced differentiation of LAN-1 cells, which lack a high K+-evoked [Ca2+]i increase in the undifferentiated state, induces the functional expression of an ω-conotoxin GVIA-sensitive, dihydropyridine-insensitive N-type voltage-sensitive Ca2+ channel that can be activated by maitotoxin and negatively modulated by protein kinase C.  相似文献   

2.
We have studied the architecture of giant neuropile glial cells of the medicinal leech Hirudo medicinalis L. using confocal laser scanning microscopy. We also measured changes in the intracellular Ca2+ concentration ([Ca2+]i) induced by activation of glutamate receptors or voltage-gated Ca2+ channels in different glial cell compartments. Glial cells of isolated segmental ganglia were filled iontophoretically with the Ca2+ indicator dye Fluo-3. The three-dimensional structure, calculated from serial sections, showed that numerous fine glial branches extend within the whole neuropile, where most of the synapses between neurones are established. Activation of glial glutamate receptors by glutamate or kainate, or depolarizing the cell membrane by elevating the external K+ concentration resulted in a transient increase in [Ca2+]i, as measured by Fluo-3 fluorescence. The comparison of [Ca2+]i changes in glial cell branches with changes in the cell body demonstrated that transients in the branches were 2–3 times larger than those in the cell body. The results suggest that glutamate receptors and voltage-gated Ca2+ channels are located in the membrane not only of the glial cell body but also of the cellular branches, which may extend close to synaptic domains.  相似文献   

3.
Abstract: Glial cells in primary mixed cultures or purified astrocyte cultures from mouse cortex respond to reduced extracellular calcium concentration ([Ca2+]e) with increases in intracellular calcium concentration ([Ca2+]i) that include single-cell Ca2+ oscillations and propagated intercellular Ca2+ waves. The rate and pattern of propagation of low [Ca2+]e-induced intercellular Ca2+ waves are altered by rapid perfusion of the extracellular medium, suggesting the involvement of an extracellular messenger in Ca2+ wave propagation. The low [Ca2+]e-induced Ca2+ response is abolished by thapsigargin and by the phospholipase antagonist U73122. The low [Ca2+]e-induced response is also blocked by replacement of extracellular Ca2+ with Ba2+, Zn2+, or Ni2+, and by 100 µM La3+. Glial cells in lowered [Ca2+]e(0.1–0.5 mM) show an increased [Ca2+]i response to bath application of ATP, whereas glial cells in increased [Ca2+]e (10–15 mM) show a decreased [Ca2+]i response to ATP. These results show that glial cells possess a mechanism for coupling between [Ca2+]e and the release of Ca2+ from intracellular stores. This mechanism may be involved in glial responses to the extracellular environment and may be important in pathological conditions associated with low extracellular Ca2+ such as seizures or ischemia.  相似文献   

4.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

5.
Abstract— Regulations of the increase in intracellular Ca2+concentration ([Ca2+]i) and inositol 1, 4, 5-trisphosphate (IP3) production by increasing intracellular cyclic AMP (cAMP) levels or activating protein kinase C (PKC) were studied in rat frontocortical cultured neurons. Amitriptyline (AMI; 1 mM), a trìcyclic antidepressant, and bradykinin (BK; 1 μM) stimulated IP3 production and caused transient [Ca2+]i increases. Pretreatment with forskolin (100mkUM, 15 min) decreased the AMI-and BK-induced [Ca2+]i increases by 33 and 48%, respectively. However, this treatment had no effect on the AMI-and BK-induced IP3 productions. Dibutyryl-cAMP (2 mM, 15 min) also decreased the AMI-and BK-induced [Ca2+]i increases by 23 and 47%, respectively. H-8 (30 μM), an inhibitor of protein kinase A (PKA), attenuated the ability of forskolin to inhibit the AMI-and BK-induced [Ca2+]i increases, suggesting that the activation of cAMP/PKA was involved in these inhibitory effects of forskolin. On the other hand, forskolin treatment had no effect on 20 mM caffeine-, 10 μM glutamate-, or 50 mM K+-induced [Ca2+]i increases. Pretreatment with phorbol 12-myristate 13-acetate (PMA; 100 nM, 90 min) decreased both the AMI-induced [Ca2+]i increases and the IP3 production by 31 and 25%, respectively. H-7 (200 μM), an inhibitor of PKC, inhibited the ability of PMA to attenuate the [Ca2+]i increases. PMA also inhibited the BK-induced IP3 production and the [Ca2+]i increases. Taken together, these results suggest that activation of cAMP/ PKA may inhibit the IP3-mediated Ca2+ release from internal stores; on the other hand, activation of PKC may inhibit the phosphatidylinositol 4,5-bisphosphate breakdown and consequently reduce the [Ca2+]i increases or inhibit independently both responses. PKA and PKC may differently regulate the phosphatidylinositol-Ca2+ signaling in rat frontocortical cultured neurons.  相似文献   

6.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

7.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

8.
We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+] i ) with peak of 422.7 ± 43.8 nm above an average resting [Ca2+] i of 104.8 ± 10.9 nm (n= 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+] i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+] i recovery was either abolished or reduced to ≤15% of control values. In contrast, no significant effect of gadolinium chloride (100 μm) or lanthanum chloride (25 μm) on either peak transient or prolonged [Ca2+] i recovery was observed. Pretreatment of cells with thapsigargin (1 μm) resulted in a 25% reduction of the mechanically induced peak [Ca2+] i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+] i transient peak. [Ca2+] i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 μm) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+] i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store. Received: 24 March 1997/Revised: 21 July 1997  相似文献   

9.
Abstract— ATP-induced changes in the intracellular Ca2+concentration ([Ca2+]i) in neuroblastoma glioma hybrid NG108–15 cells were studied. Using the fluorescent Ca2+indicator fura-2, we have shown that the [Ca2+]i increased in response to ATP. ATP at 3 mM caused the greatest increase in [Caz+]i, whereas at higher concentrations of ATP the response became smaller. Two nonhydrolyzable ATP analogues, adenosine 5′-thiotriphosphate and 5′-adenylyl-β, γ-imidodiphosphate, could not trigger significant [Ca2+]i change, but they could block the ATP effect. Other adenine nucleotides, including ADP, AMP, α,β-methylene-ATP, β,γ-methylene-ATP, and 2-methylthio-ATP, as well as UTP and adenosine, all had no effect on [Ca2+]i at 3 mM. In the absence of extracellular Ca2+, the effect of ATP was inhibited totally, but could be restored by the addition of Ca2+ to the cells. Upon removal of Mg2+, the maximum increase in [Ca2+]i induced by ATP was enhanced by about 42%. Ca2+-channel blockers partially inhibited the ATP-induced [Ca2+]i rise. The ATP-induced [Ca2+]i rise was not affected by thapsigargin pretreatment, though such pretreatment blocked bradykinin-induced [Ca2+]i rise completely. No heterologous desensitization of [Ca2+]i rise was observed between ATP and bradykinin. The magnitude of the [Ca2+]i rise induced by ATP increased between 1.5 and 3.1 times when external Na+was replaced with Tris, N-methyl-d -glucamine, choline, or Li+. The addition of EGTA or verapamil to cells after their maximum response to ATP immediately lowered the [Ca2+]i to the basal level in Na+-containing or Na+-free Tris solution. Our results suggest that ATP stimulates Ca2+influx via at least two pathways: ion channels that are permeable to Ca2+ and Na+, and pores formed by ATP4-.  相似文献   

10.
Various electrical, mechanical, and chemical stimuli, including the influences of neurotrasmitters, neuromodulators, and hormones, trigger complex changes in [Ca2+] i in all types of glial cells. Glial [Ca2+] i responses are controlled by coordinated activity of several molecular cascades. The initiation of [Ca2+] i signal in glial cells results from activation of either plasmalemmal, or intracellular Ca2+ permeable channels. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide the means for intracellular and intercellular information coding. Furthermore, glial [Ca2+] i signals can travel with no decrement within glial networks. These intercellular Ca2+ waves can be regarded as a substrate for information exchange between the glial cells. Neuronal activity can trigger [Ca2+] i signals in neighboring glial cells and, moreover, there is some evidence that glial [Ca2+] i waves can activate neuronal electrical and/or [Ca2+] i , responses. Glial Ca2+ signalling can be regarded as a form of glial excitability.  相似文献   

11.
Bupivacaine and levobupivacaine have been shown to be effective in the treatment of pain as local anesthetics, although the mechanisms mediating their antinociceptive actions are still not well understood. The aim of this study was to investigate the effects of bupivacaine and levobupivacaine on intracellular calcium ([Ca2+]i) signaling in cultured rat dorsal root ganglion (DRG) neurons. DRG neuronal cultures loaded with 5?μM Fura-2/AM and [Ca2+]i transients for stimulation with 30?mM KCl (Hi K+) were assessed by using fluorescent ratiometry. DRGs were excited at 340 and 380?nm, emission was recorded at 510?nm, and responses were determined from the change in the 340/380 ratio (basal-peak) for individual DRG neurons. Data were analyzed by using Student’s t-test. Levobupivacaine and bupivacaine attenuated the KCl-evoked [Ca2+]i transients in a reversible manner. [Ca2+]i increase evoked by Hi K+ was significantly reduced to 99.9?±?5.1% (n?=?18) and 62.5?±?4.2% (n?=?15, P?<?0.05) after the application of 5 and 50?µM levobupivacaine, respectively. Bupivacaine also inhibited Hi K+-induced [Ca2+]i responses, reduced to 98.7?±?4.8% (n?=?10) and 69.5?±?4.5% (n?=?9, P?<?0.05) inhibition of fluorescence ratio values of Hi K+-induced responses at 5 and 50?μM, respectively. Our results indicate that bupivacaine and levobupivacaine, with no significant differences between both agents, attenuated KCl-evoked calcium transients in a reversible manner. The inhibition of calcium signals in DRG neurons by levobupivacaine and bupivacaine might contribute to the antinociceptive effects of these local anesthetics.  相似文献   

12.
The effect of the membrane-permeant calcium chelator 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N−'tetraacetic acid tetra(acetoxymethyl) ester (BAPTA/AM) on ionomycin-induced cellular calcium overload was studied in single differentiated NH15-CA2 neuroblastoma x glioma hybrid cells. To monitor [Ca2+]i, we used the fluorescent indicator Fura-2. Preincubation of the cells with 3 μM BAPTA/AM reduced the number of cells showing deregulation of [Ca2+]i during ionomycin-induced calcium influx. The calcium transients elicited by application of KCI were also severely affected by the chelator. These transients, although varying from cell to cell in shape, amplitude and duration, are well reproducible in individual cells. After incubation of cells for 1 h with 0.3–30 μM BAPTA/AM the time course of these cellular transients was markedly slowed. At 1 μM BAPTA/AM, the time constant of decline of [Ca2+]i was increased by a factor of 4.1 ± 2.4 (n = 14) and the amplitude was reduced to about 50%. With 30 μM BAPTA/AM, the K+-induced calcium transients were almost completely inhibited. We conclude that intracellularly loaded calcium chelators may be used for the prevention of [Ca2+]i-induced cell damage, however, at the expense of a disturbed calcium signalling.  相似文献   

13.
The calcium indicator fura-2 was used to study the effect of hypotonic solutions on the intracellular calcium concentration, [Ca2+] i , in a human osteoblast-like cell line. Decreasing the tonicity of the extracellular solution to 50% leads to an increase in [Ca2+] i from ∼150 nm up to 1.3 μm. This increase in [Ca2+] i was mainly due to an influx of extracellular Ca2+ since removing of extracellular Ca2+ reduced this increase to ∼250 nm. After cell swelling most of the cells were able to regulate their volume to the initial level within 800 sec. The whole-cell recording mode of the patch-clamp technique was also used to study the effect of an increase in [Ca2+] i on membrane currents in these cells. An increase in [Ca2+] i revealed two types of Ca2+-activated K+ channels, K(Ca) channels. Current through both channel types could not be observed below voltage of +80 mV with [Ca2+] i buffered to 100 nm or less. With patch-electrodes filled with solutions buffering [Ca2+] i to 10 μm both channels types could be readily observed. The activation of the first type was apparently voltage-independent since current could be observed over the entire voltage range used from −160 to +100 mV. In addition, the current was also blocked by charybdotoxin (CTX). The second type of K(Ca) channels in these cells could be activated with depolarizations more positive than −40 mV from a holding potential of −80 mV. This type was blocked by CTX and paxilline. Adding paxilline to the extracellular solution inhibited regulatory volume decrease (RVD), but could not abolish RVD. We conclude that two K(Ca) channel types exist in human osteoblasts, an intermediate conductance K(Ca) channel and a MaxiK-like K(Ca) channel. MaxiK channels might get activated either directly or by an increase in [Ca2+] i elicited through hypotonic solutions. In combination with the volume-regulated Cl conductance in the same cells this K+ channel seems to play a vital role in volume regulation in human osteoblasts. Received: 8 February 2000/Revised: 13 July 2000  相似文献   

14.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

15.
Stimulation with leukotriene D4 (LTD4) (3–100 nm) induces a transient increase in the free intracellular Ca2+ concentration ([Ca2+] i ) in Ehrlich ascites tumor cells. The LTD4-induced increase in [Ca2+] i is, however, significantly reduced in Ca2+-free medium (2 mm EGTA), and under these conditions stimulation with a low LTD4 concentration (3 nm) does not result in any detectable increase in [Ca2+] i . Addition of LTD4 (3–100 nm) moreover accelerates the KCl loss seen during Regulatory Volume Decrease (RVD) in cells suspended in a hypotonic medium. The LTD4-induced (100 nm) acceleration of the RVD response is also seen in Ca2+-free medium and also at 3 nm LTD4, indicating that LTD4 can open K+- and Cl-channels without any detectable increase in [Ca2+] i . Buffering cellular Ca2+ with BAPTA almost completely blocks the LTD4-induced (100 nm) acceleration of the RVD response. Thus, the reduced [Ca2+] i level after BAPTA-loading or buffering of [Ca2+] i seems to inhibit the LTD4-induced stimulation of the RVD response even though the LTD4-induced cell shrinkage is not necessarily preceded by any detectable increase in [Ca2+] i . The LTD4 receptor antagonist L649,923 (1 μm) completely blocks the LTD4-induced increase in [Ca2+] i and inhibits the RVD response as well as the LTD4-induced acceleration of the RVD response. When the LTD4 receptor is desensitized by preincubation with 100 nm LTD4, a subsequent RVD response is strongly inhibited. In conclusion, the present study supports the notion that LTD4 plays a role in the activation of the RVD response. LTD4 seems to activate K+ and Cl channels via stimulation of a LTD4 receptor with no need for a detectable increase in [Ca2+] i . Received: 25 September 1995/Revised: 25 January 1996  相似文献   

16.
《Journal of biomechanics》2014,47(16):3903-3908
Intracellular calcium transient ([Ca2+]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca2+]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca2+]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2 AM were respectively used to detect membrane potential and [Ca2+]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca2+]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca2+]i transients. Replacing extracellular Na+ with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca2+]i transients. However, voltage-activated K+ channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca2+ or blocking of L-type voltage-sensitive Ca2+ channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca2+]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was −43.3 mV and the depolarization induced by FSS was about 44 mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca2+ mobilization wherein FSS activated SACs to promote Na+ entry to depolarize membrane that, in turn, activated L-VSCCs and Ca2+ influx though L-VSCCs switched on [Ca2+]i response in osteoblasts.  相似文献   

17.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

18.
Changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K(+) concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K(+) (1 min) with a transient increase in [Ca(2+)](i) of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K(+), the amplitude of the [Ca(2+)](i) transients averaging 592 nM. At later stages, all cells responded to 25 mM K(+) with [Ca(2+)](i) transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca(2+)](i) transients. The amplitudes of these [Ca(2+)](i) transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca(2+)](i) transients were greatly reduced in Ca(2+)-free, EGTA-buffered saline, and in the presence of the Ca(2+) channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca(2+) influx through voltage-activated Ca(2+) channels into antennal lobe glial cells. The development of the depolarization-induced Ca(2+) transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna.  相似文献   

19.
Peptidesecreting neurons from crustacean X-organ regenerating in defined culture possess different ionic current profiles correlated with two distinct morphological types, veiling and branching; voltage-dependent Ca2+ current is prominent in neurons consistently extending large veils, but is small in neurons that repetitively branch. Intracellular free calcium ([Ca2+]i) have been implicated in regulation of neurite outgrowth underlying the establishment of distinct morphologies. Here, basal [Ca2+]i was measured by fura-2 fluorescence ratio imaging from these morphologically distinct neurons and compared. Both morphological tapes can extend out processes over a [Ca2+]i range (approximately 50 to 300 nM) that is much greater than that reported for neurons of other phyla. Application of high k+ saline led to increases in [Ca2+]i in soma, neurite, and lamellipodium of veiling neurons. Increase were great for veiling than branching neurons. These observations were consistent with the previous voltage clamp data for calcium currents. Media altered to perturb [Ca2+]i were used to assess the role of [Ca2+]i in veiling or branching outgrowth programs. Outgrowth of veiling cells was arrested addition of 100 μMCD2+, a calcium channel blocker. Outgrowth resumed following brief exposures to Cd2+. Branching neurons were unaffected by Cd2+. Cd2+ at lower levels (10 μM) had no effect on outgrowth of either neuronal type, whereas at higher levels (1 mM), outgrowth of both types was arrested. Reduction of extracellular sodium to 0.001 of normal concentration stopped veiling outgrowth, but branching outgrowth continued, although it was less robust. Addition of tetrodotoxin (1 μM) did not alter outgrowth of either neuronal type relative to controls. Thus, peptidergic neurons of differing intrinsic morphologies maintain similar basal [Ca2+]i levels under identical culture conditions, yet show differing sensitivities to manipulations influencing [Ca2+]i with respect to regenerative outgrowth, but not its form. 1994 John Wiley & Sons, Inc.  相似文献   

20.
Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号