首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Closed-system respirometry is a standard technique used to determine aerobic metabolism of aquatic organisms. Open-top systems are rarely used due to concerns of gas exchange across the air–water interface. Here, we evaluated an open-top respirometry system by comparing the mass-specific routine metabolic rate (RMR) of the tropical diadromous finfish barramundi, Lates calcarifer, in both closed-top and open-top respirometers. The RMR of 190?g barramundi was determined across broad temperatures ranging from 18 to 38?°C. There was no significant difference in RMR between barramundi in either closed- or open-top respirometers at any temperature (p?>?0.05). To ensure RMR measurements were not an artifact of the respirometry system, barramundi were reciprocally transplanted into either respective closed-top or open-top respirometer and oxygen consumption re-measured at each temperature treatment. The RMR of transplanted barramundi was found to be virtually identical in either respirometer. RMR increased linearly with increasing temperature; the relationship between RMR and temperature (T; 18–38?°C) can be described as 3.658T?36.294?mg?O2?kg?0.8?h?1. The daily energetic cost of RMR was 1.193T?11.838?kJ?kg?0.8?day?1. Q10 for barramundi increased significantly with increasing temperature (p?Q10(18–28) was the lowest at 1.7 and Q10(28–38) the highest at 1.9, over the whole experiment temp range Q10(18–28) was 1.8. The current study demonstrates that open-top respirometry is a reliable and practical alternative to closed-top respirometry for accurate determination of the aerobic metabolism of barramundi and has potential application for a number of different aquatic organisms.  相似文献   

2.
Oxygen consumption by eggs of European pond turtle was determined at two constant incubation temperatures of 25 and 28°C during the second half of embryogenesis. During development at both temperatures, the rate of oxygen consumption initially increased to remain constant during the last quarter of embryogenesis. The difference between the rates of oxygen consumption at these temperatures decreased during the studied period. The coefficient Q10 for the rate of oxygen consumption decreased from 9 to 1.7. At an incubation temperature of 28°C, the changes in the rate of oxygen consumption in response to a short-term temperature decrease to 25°C or increase to 30°C depended on the developmental stage and were most pronounced at the beginning of the studied period. During late embryonic and first 2.5 months of postembryonic development, the rate of oxygen consumption did not significantly differ after such temperature changes. The regulatory mechanisms formed during embryonic development are proposed to maintain the level of oxygen consumption during temperature changes.  相似文献   

3.
Water lettuce, Pistia stratiotes, and red water fern, Azolla filiculoides, are floating aquatic macrophytes that have become problematic in South Africa. Two weevils, Neohydronomus affinis and Stenopelmus rufinasus, are successful biological control agents of these two species in South Africa. The aim of this study was to investigate the thermal requirements of these two species to explain their establishment patterns in the field. Laboratory results showed that both weevils are widely tolerant to cold and warm temperatures. The critical thermal minima (CTmin) of N. affinis was determined to be 5.58?±?0.31°C and the critical thermal maxima (CTmax) was 44.52?±?0.27°C, while the CTmin of S. rufinasus was 5.38?±?0.33°C and the CTmax?44.0?±?0.17°C. In addition, the lower lethal temperatures were ?9.85?±?0.06°C for N. affinis and ?6.85?±?0.13°C for S. rufinasus, and the upper lethal temperatures were 42.7?±?0.85°C for N. affinis and 41.9?±?2.52°C S. rufinasus. Using the reduced major axis regression method, the development for N. affinis was described using the formula y?=?12.976x?+?435.24, while the development of S. rufinasus was described by y?=?13.6x?+?222.45. These results showed that S. rufinasus develops twice as fast as N. affinis. Using these formulae and temperature data obtained from the South African Weather Service, N. affinis was predicted to complete between 4 and 9 generations per year in South Africa, while S. rufinasus was predicted to complete between 5 and 14 generations per year around the country. These results suggest that both species should not be limited by cold winter, nor warm summer temperatures, and should establish throughout the ranges of the weeds in South Africa.  相似文献   

4.
Oxygen consumption at rest was studied in drosophilid species from cool‐temperate, warm‐temperate and subtropical regions to assess whether adaptations to different climates are associated with changes in metabolic rates. In experiments at 23°C using 8‐day‐old males of 28 species, body mass was revealed to be a significant predictor of oxygen consumption. No significant relation was detected between mass‐adjusted oxygen consumption and latitudinal distribution or thermal tolerance by either conventional regression analysis or a phylogenetically based method. The effect of temperature on oxygen consumption was studied with experiments at 15, 18, 23 and 28°C using 8‐ and 24‐day‐old males of four species of each of the montium species subgroup and the subgenus Drosophila. In these experiments, it was confirmed that temperature was a significant predictor of mass‐adjusted oxygen consumption. In both lineages, mass‐adjusted oxygen consumption was not higher in cool‐temperate species than in subtropical species. Thus, adaptations to colder climates are not associated with elevation of metabolic rates in these drosophilid species. The results of the present study also indicate that oxygen consumption is not related to the capacity to walk quickly.  相似文献   

5.
Oxygen consumption rates of nauplii of the brine shrimp Artemia franciscana Kellogg 1906 were determined over a range of salinities from 10 to 110 ppm, in temperatures from 0 to 30°C, using a multi-factorial design. The oxygen micro-sensors employed have a fast response time and are capable of accurately measuring oxygen concentrations at temperatures well below 0°C. Oxygen uptake rate ranged from 0.03 to 0.66 μmol O2 mg−1 h−1 and was sensitive to changes in both salinity and temperature. Temperature was the dominant factor affecting oxygen consumption rates, which showed a significant increase with increasing temperature. A slight decrease was measured in oxygen consumption with increasing salinity related to differential solubility of oxygen in waters of different salinities. Thermal sensitivity of oxygen consumption determined from calculations of Q 10, indicated physiological adaptation of Artemia nauplii to the ranges of temperatures tested. Handling editor: A. van Kerchove  相似文献   

6.
The oxygen consumption rate during embryogenesis of Acartia tonsa subitaneous eggs were measured at different temperatures (10, 15, 17, 21, 24 and 28°C) with nanorespirometry. The oxygen consumption was constant during the embryogenesis but increased rapidly at hatching time. The mean ± SD oxygen consumption rate increased exponentially with temperature and ranged from 0.09 ± 0.04 (10°C) to 0.54 ± 0.09 nmol O2 egg−1 h−1 (28°C). The mean ± SD Q10-value was 2.51 ± 0.15. Calculations of energy consumption during embryogenesis ranged from 1.86 to 18.28 mJ depending on temperature and development time. We conclude that the effect of temperature on oxygen consumption rate was far less important than the prolonged development time when calculating the energy consumed during embryogenesis.  相似文献   

7.
Aerobic composting performance and simulation of mixed sludges   总被引:2,自引:0,他引:2  
The objectives of this study were twofold: to determine the specific oxygen consumption rate of mixed sludges by means of a respirometry study, and to investigate the applicability of a developed model to a pilot-scale reactor containing nightsoil and brewery sludges. The results of the study revealed the specific oxygen consumption rates to be 87.7 mg O2/kg VS-hr and 117.7 mg O2/kg VS-hr at temperatures of 25 °C and 35 °C, respectively. Oxygen was found to be consumed at a higher rate in the reactor operated at the higher temperature. The computer simulation for temperature variations in the pilot-scale reactor showed a good relationship between the simulated and the measured temperatures. After three days operation, the highest simulated temperature was 65 °C, whereas the highest measured temperature was 60 °C. In addition, results suggest that the model can provide an accurate air supply rate to indicate economical reactor operation.  相似文献   

8.
Swimming dynamics of the giant Australian cuttlefish, Sepia apama, were investigated using swimtunnel respirometry. Relationships between jet pressure, fin frequency, swimming speed and oxygen consumption were defined. Laboratory calibration of swimming parameters is necessary to allow estimates of swimming costs in the field.

Jet pressure was the best predictor of oxygen consumption with an averaged equation of MO2?=?722 (jet pressure)?+?107?r 2?=?0.51. Individually, fin frequency and jet pressure correlated highly to swimming speed, but due to the complicated usage of finning and jetting, the correlation between swimming speed and oxygen consumption was weaker. Cuttlefish were not optimal swimtunnel subjects and could not swim at high speeds for extended periods. At 15°C and a swimming speed of 0.06?m?s?1, the gross cost of transport was calculated to be 10.1?kg?1?m??1, with a net cost of 4.1?kg?1?m?1.  相似文献   

9.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

10.
The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 °C. Torpid bats thermoconform at moderate ambient temperature, with body temperature ≈ ambient temperature, and have a low rate of oxygen consumption determined primarily by Q 10 effects. At low ambient temperature (< 10 °C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature. Accepted: 22 August 1996  相似文献   

11.
This study establishes the bioenergetics budget of juvenile whitespotted bamboo shark Chiloscyllium plagiosum by estimating the standard metabolic rate (RS), measuring the effect of body size and temperature on the RS, and identifying the specific dynamic action (RSDA) magnitude and duration of that action in juvenile whitespotted bamboo sharks. The mean ±s .d . (RS) of six fish (500–620 g) measured in a circular closed respirometry system was 30·21 ± 5·68 mg O2 kg?1 h?1 at 18° C and 70·38 ± 14·81 mg O2 kg?1 h?1 at 28° C, respectively. There were no significant differences in RS between day and night at either 18 or 28° C (t‐test, P > 0·05). The mean ±s .d . Q10 for 18–28° C was 2·32 ± 0·06 (n = 6). The amount of oxygen consumed per hour changed predictably with body mass (M; 295–750 g) following the relationship: (n = 40, r2= 0·92, P < 0·05). The mean magnitude of RSDA was 95·28 ± 17·55 mg O2 kg?1 h?1. The amount of gross ingested energy (EI) expended as RSDA ranged from 6·32 to 12·78% with a mean ±s .d . of 8·01 ± 0·03%. The duration of the RSDA effect was 122 h. The energy content of juvenile whitespotted bamboo shark, squid and faeces determined by bomb calorimeter were 19·51, 20·3 and 18·62 kJ g dry mass?1. A mean bioenergetic budget for juvenile whitespotted bamboo sharks fed with squid at 18° C was 100C = 29·5G + 31·9RS+ 28·2RSDA+ 6·7F + 2·1E + 1·6U, where C = consumption, G = growth, F = egestion, E = excretion and U = unaccounted energy.  相似文献   

12.
Arctic ground squirrels overwintering in northern Alaska experience average soil temperature of −10°C. To examine energetic costs of arousing from hibernation under arctic compared to temperate conditions, captive ground squirrels were maintained in ambient temperatures (T a) of 2, −5 and −12°C. Rates of oxygen consumption and carbon dioxide production were used to estimate metabolic rate and fuel use during the three phases of arousal episodes: rewarming, euthermia, and recooling. Respiratory quotient comparisons suggest exclusive use of lipid during rewarming and mixed fuel use during euthermia. Animals rewarming from torpor at T a −12°C took longer, consumed more oxygen, and attained higher peak rates of oxygen consumption when compared to 2°C. T a had no significant effect on cost or duration of the euthermic phase. Animals recooled faster at −12°C than at 2°C, but total oxygen consumption was not different. T a had no significant effect on the total cost of arousal episodes when all three phases are included. Arousal episodes account for 86% of estimated costs of a complete hibernation cycle including torpor when at 2°C and only 23% at −12°C. Thus, due to the higher costs of steady-state metabolism during torpor, proportional metabolic costs of arousal episodes at T a characteristic of the Arctic are diminished compared to relative costs of arousals in more temperate conditions.  相似文献   

13.
Oxygen consumption of Amphibola crenata (Gmelin) was measured in various salinity-temperature combinations (< 0.1‰ to 41‰ salinity and 5 to 30°C) in air, and following exposure to declining oxygen tensions. In all experimental conditions, respiration varied with the 0.44 power of the body weight (sd = 0.14). The aquatic rate was consistently higher than the aerial rate of oxygen consumption, although at 30 °C the two rates were similar. Oxygen consumption increased with temperature up to 25 °C in all salinities; the lowest values were recorded at temperatures below 10 °C and at 30 °C in the most dilute medium. At all exposure temperatures, the oxygen consumption of Amphibola decreased regularly with salinity down to 0.1 ‰, and following exposure to concentrated sea water (41‰). Salinity had the least effect at 15 °C which was the acclimation temperature. In general, all of the temperature coefficients (Q10 values) were low, < 1.65. However, Q10 values above 2.8 were recorded at a salinity of 17.8‰ between 10 and 15 °C. Oxygen consumption of all size classes of Amphibola was more temperature dependent in air than in water and small individuals show a greater difference between their aerial and aquatic rates than larger snails. The rates of oxygen consumption in declining oxygen tensions were expressed as fractions of the rates in air saturated sea water at each experimental salinity-temperature combination. The quadratic coefficient B2 becomes increasingly more negative with both decreasing salinity and temperatures up to 20 °C. At higher temperatures (25 and 30 °C) the response is reversed such that O2 uptake in snails becomes increasingly independent of declining oxygen tensions at higher salinities. On exposure to a salinity of 4‰, Amphibola showed no systematic response to declining oxygen tension with respect to temperature. The ability of Amphibola to maintain its rate of oxygen consumption in a wide range of environmental conditions is discussed in relation to its potential for invading terrestrial habitats and its widespread distribution on New Zealand's intertidal mudflats.  相似文献   

14.
We used a response-surface analysis to determine the importance of different factors affecting the resting routine metabolic rate (QO2) of the white shrimp Litopenaeus vannamei. The oxygen consumption rates were estimated using a multi-factorial design with 28 combinations of different salinities (15, 20, 25, 30, 35, 40 and 45 psu) and temperature (20, 25, 30 and 35 °C) values. The response-surface analysis produced a quadratic function showing that temperature more profoundly affects the oxygen consumption rate. Response-surface curves were generated to predict the optimal conditions resulting in oxygen consumption to better understand the successful growth of this species.  相似文献   

15.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

16.
Predation is a key source of seed mortality in many weed species and thus is a part of natural control. In the field, the intensity of seed predation by invertebrates varies during the course of a year. One source of this variation is fluctuations in ambient temperature. Here, the effect of temperature on seed consumption is investigated for the first time, using two abundant carabid seed predators, Pseudoophonus rufipes and Harpalus affinis (Coleoptera: Carabidae), and dandelion (Taraxacum officinale) as a model system. Field collected individuals were sexed, kept at one of six constant temperatures between 10 and 28 °C and provided with a surplus of seed. Seed consumption was recorded over a period of 4 days. Averaged over all the temperatures, the smaller H. affinis consumed 12.2 seeds day?1 and larger P. rufipes 29 seeds day?1. On average, females consumed more seeds than males. Seed consumption by both species increased with temperature. In H. affinis the increase was linear and different for males and females. In P. rufipes the consumption was similar in both sexes but curvilinear because there was no further increase in consumption above 20 °C. Assuming a linear relationship between temperature and consumption at up to 20 °C we calculated the temperature at which seed consumption ceased (?0.1 to 0.3 °C in H. affinis and 6.3–6.9 °C in P. rufipes) and the increment in seed consumption per 1 °C increase in temperature above this threshold (0.4–1.0 and 1.5–4.2 seeds individual?1 day?1, respectively) for the two species. Thus, it is possible to calculate the average daily consumption of each species over a range of temperatures up to 20 °C.  相似文献   

17.
The objective of this study was to provide information on changes in the metabolism and swimming ability of juvenile sterlet sturgeon, Acipenser ruthenus, caused by acutely low or high temperatures. Changes in critical swimming speed (Ucrit), oxygen consumption rate (MO2), tail beat frequency (TBF) and tail beat amplitude (TBA) were observed with a Steffensen‐type swimming respirometer, an oxygen electrode and a camera at different swimming speeds at three temperatures: 5°C, 15°C, and 25°C. Fish tested at 5°C and 25°C were maintained at 15°C (near optimal) for one week to simulate conditions below a dam. The Ucrit value decreased significantly during acute temperature changes at 5°C and 25°C; Ucrit was highest near the optimal temperature. Oxygen consumption rate (MO2) increased with the swimming speed at 15°C; however, at 25°C and 5°C, the MO2 decreased with the swimming speed. Both TBA and TBF decreased at 5°C and 25°C compared to values at 15°C. The slopes of the regression lines (TBF/U) at 5°C and 25°C seemed lower compared to 15°C.  相似文献   

18.
Diving birds can lose significant body heat to cold water, but costs can be reduced if heat from exercising muscles or the heat increment of feeding (HIF) can substitute for thermogenesis. Potential for substitution depends jointly on the rate of heat loss, the rate of heat produced by exercise, and the level of HIF. To explore these interactions, we measured oxygen consumption by lesser scaup ducks (Aythya affinis) diving to depths of 1.2 and 2 m at thermoneutral (23°C) and sub-thermoneutral (18 and 8°C) temperatures. Birds dove while fasted and when feeding on blue mussels (Mytilus edulis). Substitution occurred if HIF or costs of diving above resting metabolic rate (RMR) were lower at 18 or 8°C than at 23°C, indicating reduction in the thermoregulatory part of RMR. For fasted scaup diving to 1.2 m, substitution from exercise heat was not apparent at either 18 or 8°C. At 2 m depth, dive costs above RMR were reduced by 5% at 18°C and by 40% at 8°C, indicating substitution. At 1.2 m depth (with voluntary intake of only 14–17% of maintenance requirements), HIF did not differ between temperatures, indicating no substitution. However, at 2 m (intake 13–25% of maintenance), substitution from HIF was 23% of metabolizable energy intake at 18°C and 22% at 8°C. These results show that even with low HIF due to low intake rates, substitution from HIF can add to substitution from the heat of exercise.  相似文献   

19.
A possible method for detection of wood-boring insects in wood is the measurement of oxygen consumption. In order to develop such a method, several parameters have to be determined first. The most important one is to determine the respiration rate of possible pest species. To obtain the data for establishing the method mentioned above, the respiration rates of the following species were determined: the old house borer, Hylotrupes bajulus, common furniture beetle, Anobium punctatum and subterranean termite, Reticulitermes lucifugus. We compared the O2 consumption between different species as well as between adults and larvae of one species in different environmental conditions (temperature, day/night and light/dark regime). The most intensive respiration rates were found for the larvae of Hylotrupes bajulus (4.0 ml/g h O2) and Anobium punctatum (3.9 ml/g h O2). Less intensive breathing was measured by Reticulitermes lucifugus (workers 2.9 ml/g h, nymphs 2.6 ml/g.h and soldiers 2.0 ml/g h O2). These results indicate that it is possible to detect the presence of wood-boring insects respirometrically. To detect the presence of an individual insect in the wood by means of respirometry, the sensitivity of the instrument for oxygen measurement at the optimal conditions must be around 0.2 ml/h.  相似文献   

20.
The Antarctic notothenioid Pagothenia borchgrevinki was collected from the stenothermal waters of McMurdo Sound in the summers of 2004, 2005 and 2006. Acclimation ability at 4° C was tested in healthy P. borchgrevinki and in individuals infected with x‐cell gill disease. All healthy fish successfully acclimated to 4° C, establishing compensatory changes in resting oxygen consumption rate (Rrest) and critical swimming speed (Ucrit) during a 1 month acclimation period, which were maintained during a longer, 6 month acclimation period. In contrast, individuals infected with x‐cell disease were unable to acclimate to 4° C, demonstrating significantly reduced survival rates compared with healthy individuals at 4° C. Measurements of Rrest suggest that limitations in the ability of x‐cell fish to uptake oxygen from the external milieu may have a negative effect on their survival at 4° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号