首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The temperature-dependence of photosynthesis and chlorophyll (Chl) fluorescence quenching components was studied between 0 and 45°C in three tropical, chilling-sensitive Vigna species and in chilling-tolerant pea. Photosynthesis of the Vigna spp. was approx. 20% more reduced by temperatures between 7 and 30°C than in pea. The latter revealed significant changes in Chl fluorescence parameters at much lower temperature than the Vigna spp. Below 15°C, the reduction state of QA increased quickly in pea, while in Vigna already below 30°C, an increase of reduced QA was obtained. The analysis of different components of non-photochemical Chl fluorescence quenching (qN) revealed, that in pea photoinhibitory quenching (qI) occurred below 13°C. Below ca. 7°C, a sudden breakdown of both qP and the fast relaxing component of qN was observed in pea.In Vigna, susceptibility of LHC II phosphorylation or limitation of electron flow by damage to PS I, the PS II reaction centre or the water-splitting system were not responsible for the chilling-sensitivity of photosynthesis between 5 and 30°C. Instead, photosynthesis was gradually limited by an inefficient use of reduction equivalents. This, in turn may increase susceptibilty to photoinhibition, which occurred below 20°C in Vigna. The combined study of qP and of the different components of qN allowed the demonstration of the subsequent occurrence of different limiting processes with decreasing temperature in the chilling-sensitive Vigna species.  相似文献   

2.
To determine how parameters of a Farquhar-type photosynthesis model varied with measurement temperature and with growth temperature, eight cool and warm climate herbaceous crop and weed species were grown at 15 and 25 °C and single leaf carbon dioxide and water vapor exchange rates were measured over the range of 15 – 35 °C. Photosynthetic parameters examined were the initial slope of the response of assimilation rate (A) to substomatal carbon dioxide concentration (Ci), A at high Ci, and stomatal conductance. The first two measurements allow calculation of VCmax, the maximum rate of carboxylation of ribulose bisphosphate carboxylase and Jmax, the maximum rate of photosynthetic electron transport, of Farquhar-type photosynthesis models. In all species, stomatal conductance increased exponentially with temperature over the whole range of 15 – 35 °C, even when A decreased at high measurement temperature. There were larger increases in conductance over this temperature range in the warm climate species (4.3 ×) than in the cool climate species (2.5 ×). The initial slope of A vs. Ci exhibited an optimum temperature which ranged from 20 to 30 °C. There was a larger increase in the optimum temperature of the initial slope at the warmer growth temperature in the cool climate species than in the warm climate species. The optimum temperature for A at high Ci ranged from 25 to 30 °C among species, but changed little with growth temperature. The absolute values of both the initial slope of A vs. Ci and A at high Ci were increased about 10% by growth at the warmer temperature in the warm climate species, and decreased about 20% in the cool climate species. The ratio of Jmax — VCmax normalized to 20 °C varied by more than a factor of 2 across species and growth temperatures, but differences in the temperature response of photosynthesis were more related to variation in the temperature dependencies of Jmax and VCmax than to the ratio of their normalized values.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
The suitability of five grain legume species (narrow-leafed lupin, chickpea, faba bean, field pea, lentil) as hosts for three aphid species (green peach aphid, cowpea aphid, bluegreen aphid) was evaluated by measuring the mean relative growth rate (MRGR) and survivorship of nymphs over a 5 day period. For each aphid species, intraspecific (interclonal) variation was also determined by independently measuring the performance of 30 clones collected from a variety of hosts and from different parts of the Western Australia (WA) wheatbelt. The suitability of the grain legumes varied among aphid species. Chickpea was not a suitable host for any of the aphids tested. Averaged over all clones, lentil and faba bean were the most suitable hosts for cowpea aphid, and narrow-leafed lupin was the most suitable host for green peach aphid. Field pea was a suitable host for all three species, but only at a suboptimal level. Cowpea aphid showed the greatest amount of intraspecific variation, with significant variation in MRGR among clones on all hosts except chickpea and significant variation in survivorship on chickpea and lupin. For green peach aphid, there was significant variation in MRGR among clones on field pea and lupin, but in survivorship on lupin only. Bluegreen aphid clones showed significant variation only for MRGR on faba bean and lupin. There were positive correlations in performance of green peach aphid clones on faba bean and lentil, and of cowpea aphid clones on faba bean and lentil. Bluegreen aphid clones showed a negative correlation in performance on field pea and faba bean. These results show the importance of screening cultivars against a wide variety of aphid clones when assessing aphid susceptibility in breeding programmes. The implications of these results on the adaptability of parthenogenetic aphids are discussed.  相似文献   

4.
Understanding the effects of arbuscular mycorrhizal fungi (AMF) under different environmental contexts on overyielding in intercropping systems can be instructive in optimizing productivity and ecosystem services. A greenhouse study was conducted with maize and faba bean monocultures or intercropping at low phosphorus (P) and high P levels with three different water availabilities, and inoculated with or without AMF species Funneliformis mosseae. At low P level, overyielding was mainly due to the increase of maize biomass promoted by AMF relative to faba bean. Whereas in high P soils, overyielding was observed at all treatments, regardless of AMF. Inoculation of AMF significantly improved maize rather than faba bean P uptake, water use efficiency and photosynthesis rate, in particular at the low P level. This study identified the context dependence of AMF in influencing overyielding in maize/faba bean intercropping and demonstrates the importance of AMF in sustainable agricultural production.  相似文献   

5.
Bunce  J 《Journal of experimental botany》1998,49(326):1555-1561
The temperature dependencies of the solubility of carbon dioxide and oxygen in water and the temperature dependency of the kinetic characteristics of the ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme result in the short-term stimulation of photosynthesis with a doubling of carbon dioxide from 350 to 700 mol mol-1 usually decreasing from about 90% at 30C to about 25% at 10C at high photon flux. In field-grown wheat and barley, the expected values at 30°C were observed, but also values as high as 60% at 10°C. The much larger than expected stimulation at cool temperatures in these species also occurred in plants grown at 15°C, but not at 23°C in controlled environment chambers. Gas exchange analysis indicated that an unusually high diffusive limitation was not an explanation for the large response. Assessment of the apparent in vivo specificity of Rubisco by determining the carbon dioxide concentration at which carboxylation equalled carbon dioxide release from oxygenation, indicated that growth at low temperatures altered the apparent enzyme specificity in these species compared to these species grown at the warmer temperature. Inserting the observed specificities into a biochemical model of photosynthesis indicated that altered Rubisco specificity was consistent with the observed rates of assimilation. Whether altered apparent Rubisco specificity is caused by altered stoichiometry of photorespiration or an actual change in enzyme specificity, the results indicate that the temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide may vary greatly with species and with prior exposure to low temperature.Keywords: Barley, carbon dioxide, photosynthesis, temperature, wheat.   相似文献   

6.
The experiments described were designed to investigate the way in which high temperatures (30°C and above) affected the survival and infectivity of spores of Glomus intraradices formulated as the commercial inoculum NutriLinkTM. Infection of mung bean (Vigna radiata) occurred most rapidly at 30°C compared with either 22° or 38°C, although the final percentage of the root length infected (6 weeks) was similar at all three temperatures. Early rapid infection led to greater plant growth of this species at 30°. In cashew (Anacardium occidentale) no infection occurred at 38°C and this was associated with low plant growth, compared with the other temperatures at which infection reached 40–60% after 4 months. In both species differences in root temperature were associated with marked differences in the morphology and growth of the root systems, with poor root growth at 38°C. Spores of G. intraradices retained infectivity with respect to mung bean for up to 6 weeks in moist fallow soil, although maximum infectivity was observed in soil without a fallow period. The effects of temperature on germination of spores buried in filter paper sandwiches in soil were consistent with the data for infection and growth. Germination was most rapid and reached the highest percentage at 3 weeks at 30°C. Lowest germination was attained at 38°C. We conclude that G. intraradices can retain its infectivity in moist soil at high temperatures, but that the extent to which the plants become infected and hence their response, depends not only on this but also on host factors such as root growth.  相似文献   

7.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

8.
The effects of chilling on ethylene production by leaf discs and whole plants of bean (chilling-sensitive) and pea (chilling-tolerant) were studied. When pea or bean leaf discs were excised and incubated at 25°C, transient increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation were observed. Both pea and bean discs kept at 5°C evolved little ethylene, but levels of ACC increased in pea discs and not in bean discs. When discs of either species were chilled at 5°C immediately after excision and then transferred to 25°C 9 h later, increases in their ACC levels and ethylene production rates were observed. Discs were also incubated at 25°C for 12 h to allow excision-induced ethylene production to subside and then chilled at 5°C. Nine hours later, these discs were transferred to 25°C, and an increase in ethylene production was observed. These data indicate that chilling suppresses excision-induced ethylene production and enhances the production of ethylene after transfer to 25°C. Chilling of whole plants resulted in increased production of ethylene and ACC in the chilling-sensitive bean but not in the chilling-tolerant pea. Treatment of bean plants with the ethylene antagonists silver thiosulfate, norbornadiene, or aminooxyacetic acid, or of pea plants with ethylene, did not affect the appearance of chilling injury symptoms, indicating that ethylene does not induce injury symptoms and may not have an adaptive role in chilling stress.  相似文献   

9.
Nitrate reductase (NR) activity was measuredin vivo in differentcrop species at 25–60 °C. Highest NR activity wasobserved at 40 °C in pigeon pea, cowpea, sunflower, sesameand sorghum, 45 °C in maize and 50 °C in bajra. At higherincubation temperatures NR activity declined in all species.In mung bean the optimum incubation temperature varied withthe season. In the summer crop of mung beans, NR activity wasmaximum at 50 °C while in the rainy season crop 30 °Cwas the optimum incubation temperature. NR in sesame was relativelyheat-tolerant. The results indicate that 30 °C is not theoptimum incubation temperature for all crop species. Nitrate reductase, temperature, in vivo assay  相似文献   

10.
Makino A  Nakano H  Mae T 《Plant physiology》1994,105(4):1231-1238
Effects of growth temperature on the photosynthetic gas-exchange rates and their underlying biochemical properties were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under day/night temperature regimes of 18/15[deg]C, 23/18[deg]C, and 30/23[deg]C and all photosynthetic measurements were made at a leaf temperature of 25[deg]C and an irradiance of 1800 [mu]mol quanta m-2 s-1. Growth temperature affected the photosynthetic CO2 response curve. The relative ratio of the initial slope to the CO2-saturated photosynthesis increased with rising growth temperature. This was caused mainly by an increase in CO2-limited photosynthesis for a given leaf nitrogen content with rising growth temperature. However, there was no difference in ribulose-1,5-bisphosphate carboxylase (Rubisco) content at any given leaf nitrogen content among temperature treatments. In addition, the activation state and catalytic turnover rate of Rubisco were not affected by growth temperature. The increase in CO2-limited photosynthesis with rising growth temperature was the result of an increase in the CO2 transfer conductance between the intercellular airspaces and the carboxylation sites. The amounts of total chlorophyll and light-harvesting chlorophyll a/b protein II increased for the same leaf nitrogen content with rising growth temperature, but the amounts of cytochrome f and coupling factor 1 and the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were the same between plants grown at 23/18[deg]C and those grown at 30/23[deg]C. Similarly, CO2-saturated photosynthesis was not different for the same leaf nitrogen content between these treatments. For the 18/15[deg]C-grown plants, a slight decrease in the amounts of cytochrome f and coupling factor 1 and an increase in the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were found, but these were not reflected in CO2-saturated photosynthesis.  相似文献   

11.
The effect of temperatureon conidial germination, mycelial growth, andsusceptibility of adults of three tephritidfruit flies, Ceratitis capitata(Wiedemann), C. fasciventris (Bezzi) andC. cosyra (Walker) to six isolatesof Metarhizium anisopliae were studied inthe laboratory. There were significantdifferences among the isolates in the effect oftemperature on both germination and growth.Over 80% of conidia germinated at 20, 25 and30°C, while between 26 and 67% conidiagerminated at 35°C and less than 10% at15°C within 24 hours. Radial growth was slowat 15°C and 35°C with all of theisolates. The optimum temperature forgermination and mycelial growth was 25°C. Mortality caused by the six fungal isolatesagainst the three fruit fly species varied withtemperature, isolate, and fruit fly species.Fungal isolates were more effective at 25, 30and 35°C than at 20°C. The LT90values decreased with increasing temperature upto the optimum temperature of 30°C. Therewere significant differences in susceptibilitybetween fly species to fungal infection at allthe temperatures tested.  相似文献   

12.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

13.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

14.
Drought and high temperature often occur simultaneously, but their effects on crops are usually investigated individually. Our objective was to compare effects of drought, high temperature, and their interactions on photosynthesis and grain-growth of wheat (Triticum aestivum L.). Plants (cv. Len) were grown uniformly in well-watered soil at 25/20 ± 2 °C day/night until anthesis, when they were subjected to regimes of no drought (soil at field capacity) and drought (plant water potential of –.0 to –2.4 MPa) at 15/10, 25/20, and 35/30 °C in controlled environments until physiological maturity. Drought decreased photosynthesis, stomatal conductance, viable leaf area, shoot and grain mass, and weight and soluble sugar content of kernels but increased plant water-use efficiency. High temperature hastened the decline in photosynthesis and leaf area, decreased shoot and grain mass as well as weight and sugar content of kernels, and reduced water-use efficiency. Interactions between the two stresses were pronounced, and consequences of drought on all physiological parameters were more severe at high temperature than low temperature. The synergistic interactions indicated that productivity of wheat is reduced considerably more by the combined stresses than by either stress alone, and that much of the effect is on photosynthetic processes.  相似文献   

15.
Although it has been suggested that the maximum axial growth pressure of roots is temperature-dependent, this has not previously been tested experimentally. In this paper we report the temperature-dependence of the maximum axial growth pressure of completely mechanically-impeded roots of pea (Pisum sativum L. cv Meteor). Maximum growth pressures were somewhat lower at 15 and 20°C than at 10, 25 or 30°C, but there was no overall trend for maximum growth pressure to increase or decrease with temperature. Turgor pressure in unimpeded roots varied little with temperature and we suggest that cell wall tension in completely impeded roots also varies little with temperature.  相似文献   

16.
Lidon  F.C.  Ribeiro  G.  Santana  H.  Marques  H.  Correia  K.  Gouveia  S. 《Photosynthetica》2001,39(1):17-22
The concentrations of photosynthetic pigments decreased in both chilling stressed species but the ratios of chlorophyll (Chl) a/b and total carotenoids (Car)/Chls were depressed only in faba bean. The contents of + carotene and lutein+lutein-5,6-epoxide remained unaffected in both species, but the de-epoxidation state involving the components of xanthophyll cycle increased in pea. Under chilling stress the photosynthetic electron transport associated with photosystem 2, PS2 (with and without the water oxidising complex) decreased in both plant species, the inhibition being higher in faba bean. The intrachloroplast quinone pool also decreased in both stressed species, yet an opposite trend was found for cytochrome b 559LP. Under stress an increasing peroxidation of thylakoid acyl lipids was detected in pea, but higher protein/Chl ratio was detected in faba bean. Thus the acceptor side of PS2 is mostly affected in both chilling stressed species, but faba bean is more sensitive.  相似文献   

17.
Potassium (K) is reported to improve plant's resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer.  相似文献   

18.
The effects of temperature and photoperiod on winged beans werestudied using 15 University of New Guinea (UPS) selections andfive Sri Lanka (SL) selections. They were grown at 25/20 or30/25 °C day/ night temperature at 11 or 14 h photoperiodwith 12 h thermoperiod. Differences in stomatal density wereobserved among selections and between photoperiods. Higher densitiesoccurred at 14 h photoperiod than at 11 h photoperiod. Whenstomatal density was high due to a photoperiod or temperatureeffect, there was a corresponding increase in leaf area andd. wt of plants. Total chlorophyll content at 25/20 °C was higher at 11 hphotoperiod than at 14 h photoperiod in all selections whilethe total chlorophyll content at 30/25 °C varied with thephotoperiod and selection. Leaf area of SL selections was greater than that of UPS selections.Also greater leaf area was observed at 14 h photoperiod thanat 11 h photoperiod, irrespective of the growing temperature. Temperature was as important as photoperiod in controlling floweringof winged beans. All the UPS selections and two SL selectionsflowered at 11 h photoperiod at 25/20 °C but failed to flowerat the same photoperiod at 30/25 °C indicating an interactionbetween temperature and photoperiod. It is likely that wingedbeans have a narrow photoperiodic range, particularly the SLselections. Psophocarpus tetragonolobus (L.) D.C., winged bean, stomatal density, leaf area, flowering, temperature, photoperiod  相似文献   

19.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

20.
Summary The influence of temperature (15–32°C) and the ratio of nitrogen to phosphorus (N/P) in the culture medium (0.5–80) on the growth kinetics and protein, chlorophyll, lipid and fatty acid content of the marine microalga Tetraselmis sp. have been studied. Below an N/P of 20, growth was determined by N limitation and above 20 by P limitation. Protein increased with a rise in N content at any test temperature. The chlorophyll content increased with temperature, with maximum values at 25°C. The lipid content decreased with increasing N/P ratio above 20°C. The polyunsaturated fatty acid content tends to be inversely proportional to the growth rate within the N/P range 20–80. The quotient of the n 3 and n 6 polyunsaturated-fatty-acid fractions, an indicator of the nutritive value of microalgae, was found to be within the range 2–3. These values were obtained either between 25 and 28°C independent of the N/P ratio used at 20°C for N/P ratios higher than 40.0. Offsprint requests to: Emilio Molina  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号