首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
The ultrastructure and physiology of the maxillary palp of Drosophila melanogaster have been studied in wild-type and lozenge mutants. Olfactory physiology in the maxillary palp is shown to depend upon the lozenge(lz) gene. Reduced response amplitudes were recorded for all odorants tested, and the physiological defect was shown to map to the lz locus. The structure of the maxillary palp sensilla is described by scanning electron microscopy (SEM) at high magnification, initially in the wild-type. A linear arrangement of pores, connected by furrows, was found in one class of sensilla, the basiconic sensilla. In the lz 3 mutant, morphological alterations in the basiconic sensilla and duplications of sensilla are documented by SEM. The correlation of structural abnormalities in the lz sensilla and physiological abnormalities in odorant response are consistent with an olfactory role for the basiconic sensilla of the maxillary palp. Accepted: 10 September 1996  相似文献   

2.
This article provides characterization of the electrical response to odorants in the Drosophila antenna and provides physiological evidence that a second organ, the maxillary palp, also has olfactory function in Drosophila. The acj6 mutation, previously isolated by virtue of defective olfactory behavior, affects olfactory physiology in the maxillary palp as well as in the antenna. Interestingly, abnormal chemosensory jump 6 (acj6) reduces response in the maxillary palp to all odorants tested except benzaldehyde (odor of almond), as if response to benzaldehyde is mediated through a different type of odorant pathway from the other odorants. In other experiments, different parts of the antenna are shown to differ with respect to odorant sensitivity. Evidence is also provided that antennal response to odorants varies with age, and that odorants differ in their age dependence. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
Maxillary palps have been proposed as secondary olfactory organs, after the antennae, in Drosophila melanogaster. Our study tries to establish the quantitative importance of both organs as olfactory information mediators. Dose-response curves for three odorants: ethyl acetate, propionaldehyde and benzaldehyde were carried out for comparing olfaction in either complete animals or flies surgically deprived of antennae. Antennaless flies tested in our behavioral assay showed indifferent, attractant and repellent responses depending on concentration, similarly as normal flies do. However, they clearly displayed less sensitivity than normal flies. The range of concentrations they were able to perceive was correlated to antennal sensitivity approximately by a factor 110 for ethyl acetate and benzaldehyde, and between 110 and 1100 at high concentrations of propionaldehyde. A complementary experiment was performed to test changes in olfactory behavior produced by removing maxillary palps in the presence of antennae. At high concentrations of odorant, responses to ethyl acetate and propionaldehyde experienced small changes when both palps were removed. Results are compatible with a summation model of all olfactory information reaching the brain either through antennae or palps.Abbreviations ANOVA analysis of variance - EAG electroantennogram, extracellular recording of electrical changes produced on the antenna in response to odorant stimulation - EPG electropalpogram, extracellular recording of electrical changes produced on the maxillary palp in response to odorant stimulation - IO Olfactory index  相似文献   

4.
The antennal lobe was examined by Golgi-silver impregnation to differentiate the glomeruli depending on the source and types of inputs. Thirty-five of the 43 ‘identified’ olfactory glomeruli were Golgi-silver impregnated in the present study. Seven glomeruli compared to three, reported previously, were found to be targets of maxillary palp chemosensory neurons. These include glomeruli VA3, VC2, VM5, VA7m/VA7l of the ventral antennal lobe and DC2, DC3, DM5 of the dorsal antennal lobe. The number of glomeruli receiving the maxillary palp sensory projections tallies with the number ofDrosophila olfactory receptors (seven) reported to be expressed exclusively in the maxillary palp. Twenty-eight Golgi-impregnated glomeruli were found to receive input from the antennal nerve. The ratio of glomeruli serving the maxillary palp to those serving the antenna (∼1:5) matches with the ratio ofDrosophila olfactory receptors expressed in these two olfactory organs respectively. In addition to glomerulus V, glomeruli VP1-3, VL1, VL2a/2p and VC3m/3l were found to receive ipsilateral projections. Thus, additional ipsilateral glomeruli have been identified.  相似文献   

5.
This article provides characterization of the electrical response to odorants in the Drosophila antenna and provides physiological evidence that a second organ, the maxillary palp, also has olfactory function in Drosophila. The acj6 mutation, previously isolated by virtue of defective olfactory behavior, affects olfactory physiology in the maxillary palp as well as in the antenna. Interestingly, abnormal chemosensory jump 6 (acj6) reduces response in the maxillary palp to all odorants tested except benzaldehyde (odor of almond), as if response to benzaldehyde is mediated through a different type of odorant pathway from the other odorants. In other experiments, different parts of the antenna are shown to differ with respect to odorant sensitivity. Evidence is also provided that antennal response to odorants varies with age, and that odorants differ in their age dependence.  相似文献   

6.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

7.
The Drosophila retinal degeneration B (rdgB) gene encodes an integral membrane protein involved in phototransduction and prevention of retinal degeneration. RdgB represents a nonclassical phosphatidylinositol transfer protein (PITP) as all other known PITPs are soluble polypeptides. Our data demonstrate roles for RdgB in proper termination of the phototransduction light response and dark recovery of the photoreceptor cells. Expression of RdgB''s PITP domain as a soluble protein (RdgB-PITP) in rdgB2 mutant flies is sufficient to completely restore the wild-type electrophysiological light response and prevent the degeneration. However, introduction of the T59E mutation, which does not affect RdgB-PITP''s phosphatidylinositol (PI) and phosphatidycholine (PC) transfer in vitro, into the soluble (RdgB-PITP-T59E) or full-length (RdgB-T59E) proteins eliminated rescue of retinal degeneration in rdgB2 flies, while the light response was partially maintained. Substitution of the rat brain PITPα, a classical PI transfer protein, for RdgB''s PITP domain (PITPα or PITPα-RdgB chimeric protein) neither restored the light response nor maintained retinal integrity when expressed in rdgB2 flies. Therefore, the complete repertoire of essential RdgB functions resides in RdgB''s PITP domain, but other PITPs possessing PI and/or PC transfer activity in vitro cannot supplant RdgB function in vivo. Expression of either RdgB-T59E or PITPα-RdgB in rdgB + flies produced a dominant retinal degeneration phenotype. Whereas RdgB-T59E functioned in a dominant manner to significantly reduce steady-state levels of rhodopsin, PITPα-RdgB was defective in the ability to recover from prolonged light stimulation and caused photoreceptor degeneration through an unknown mechanism. This in vivo analysis of PITP function in a metazoan system provides further insights into the links between PITP dysfunction and an inherited disease in a higher eukaryote.The Drosophila retinal degeneration B protein (RdgB)1 plays a critical role in the fly photoreceptor cell. The rdgB mutant phenotype is characterized by retinal degeneration whose onset, while discernible in dark-reared flies, is greatly accelerated by raising the flies in light (Harris and Stark, 1977; Stark et al., 1983). Typically, rdgB mutant flies begin to exhibit the morphological hallmarks of photoreceptor cell degeneration several days after eclosion (Harris and Stark, 1977; Stark et al., 1983). In addition, these mutant flies exhibit an abnormal light response, as recorded by the rapid deterioration of the electroretinogram (ERG), shortly after the fly''s initial exposure to light. This ERG defect is manifested before any obvious physical signs of retinal degeneration (Harris and Stark, 1977), which suggests that the defect in the light response may precipitate the course of retinal degeneration.In the photoreceptor cell, RdgB localizes to both the axon and the subrhabdomeric cisternae (SRC) (Vihtelic et al., 1993; Suzuki and Hirosawa, 1994). The SRC is an extension of the endoplasmic reticulum that functions both as an intracellular Ca2+ store and a compartment through which rhodopsin traffics en route to the rhabdomere (Walz, 1982; Matsumoto-Suzuki et al., 1989; Suzuki and Hiosawa, 1991). Thus, RdgB is the first identified protein required for visual transduction that is not localized in the photoreceptor rhabdomere. Genetic epistasis analyses suggest RdgB functions downstream of both rhodopsin and phospholipase C (PLC) in the visual transduction cascade as both the ninaE (encoding the opsin expressed in photoreceptor cells R1-6 [O''Tousa et al., 1985; Zuker et al., 1985]) and norpA (encoding phospholipase C [Bloomquist et al., 1988]) mutations suppress the rdgB-dependent, light-enhanced retinal degeneration (Harris and Stark, 1977; Stark et al., 1983). Consistent with this view, constitutive activation of the Drosophila G protein transducin analogue (DGq), either by application of nonhydrolyzable GTP analogues or by expression of a constitutively activated Gα subunit (Dgq1), effects a rapid degeneration of rdgB retinas in the absence of light (Rubinstein et al., 1989; Lee et al., 1994). RdgB apparently functions downstream of the inaC-encoded protein kinase C (PKC) because: (a) application of phorbol ester to rdgB mutant retinas, which presumably activates the inaC-encoded PKC, stimulates retinal degeneration in the absence of light (Minke et al., 1990); and (b) the rdgB retinal degeneration is weakly suppressed by the inaC mutation (Smith et al., 1991). Thus, the available evidence identifies an execution point for RdgB downstream of PKC in the visual transduction cascade.RdgB is a 116-kD membrane polypeptide with six potential transmembrane domains (Vihtelic et al., 1991). Additionally, the amino-terminal 281 RdgB residues share 42% amino acid identity with the rat brain phosphatidylinositol (PI) transfer protein α isoform (PITPα) (Vihtelic et al., 1993). Whereas PITPs are operationally defined by their ability to catalyze the transfer of either PI or phosphatidylcholine (PC) monomers between membrane bilayers in vitro (Bankaitis et al., 1990; Cleves et al., 1991; Wirtz, 1991), how the phospholipid transfer activity pertains to in vivo function is less clear. The yeast PITP (Sec14p) uses its PI and PC binding activities in two independent, yet complementary, ways that serve to preserve a Golgi pool of diacylglycerol that is critical for the biogenesis of Golgi-derived secretory vesicles (Kearns et al., 1997). Reconstitution studies suggest that mammalian PITPs play important roles in PLC-mediated inositol signaling, ATP-dependent, Ca2+-activated secretion, and constitutive secretion from the trans-Golgi network (Hay and Martin, 1993, 1995; Thomas et al., 1993, 1995; Ohashi et al., 1995). However, because the PITP requirement for these processes is generally satisfied by any PITP (even those lacking any primary sequence identity), the physiological relevance of these PITP involvements remains to be determined (Skinner et al., 1993; Cunningham et al., 1995; Ohashi et al., 1995; Alb et al., 1996). The recent finding that the mouse vibrator mutation represents a hypomorphic mutation in the pitpn gene, which encodes PITPα, indicates that PITP function is important to neuronal function (Hamilton et al., 1997). RdgB''s PITP domain (when expressed as a soluble protein in Escherichia coli) is able to effect intermembrane transfer of PI in vitro (Vihtelic et al., 1993). Unlike all previously characterized PITPs, which are 32–35-kD soluble proteins (Bankaitis et al., 1989; Cleves et al., 1991; Wirtz, 1991), RdgB is a large integral membrane protein. In spite of postulated in vivo activities for PITPs, the function of RdgB in the photoreceptor cell remains unknown. Recently, vertebrate orthologues of the rdgB gene were identified in mice, bovines, and humans (Chang et al., 1997). Expression of the mouse rdgB cDNA in rdgB2 null mutant flies resulted in the elimination of the retinal degeneration and complete restoration of the wild-type ERG light response (Chang et al., 1997). Thus, the Drosophila RdgB protein defines a new class of functionally equivalent transmembrane PITPs.In this work, we analyzed RdgB''s involvement in the Drosophila phototransduction cascade and the mechanism by which it prevents the onset of retinal degeneration. This represents the first in vivo analysis of the transmembrane PITP class, and we report several novel and unanticipated aspects of RdgB function. We demonstrate that the complete repertoire of RdgB functions essential for normal phototransduction reside in the PITP domain. Expression of this domain as a soluble polypeptide fully complements the rdgB2 null allele. Yet, other PITPs that possess PI and/ or PC transfer activities in vitro cannot substitute for RdgB in the photoreceptor cell. Whereas the recessive rdgB2 null mutation demonstrates an essential role for RdgB in proper termination of the ERG light response and dark recovery of the photoreceptor cell, one novel dominant rdgB mutation affects the maintenance of steady- state rhodopsin levels in photoreceptor cells. Another dominant rdgB mutation induces retinal degeneration and compromises the rapid regeneration of a wild-type ERG light-response amplitude subsequent to multiple or prolonged light exposure. Taken together, these data indicate an underlying complexity to the mechanism of RdgB function and its role in the photoreceptor cell that is not easily reconciled with a simple role in potentiating signal transduction via phosphoinositide-driven signaling pathways.  相似文献   

8.
Shiraiwa T 《PloS one》2008,3(5):e2191
Drosophila melanogaster has an olfactory organ called the maxillary palp. It is smaller and numerically simpler than the antenna, and its specific role in behavior has long been unclear. Because of its proximity to the mouthparts, I explored the possibility of a role in taste behavior. Maxillary palp was tuned to mediate odor-induced taste enhancement: a sucrose solution was more appealing when simultaneously presented with the odorant 4-methylphenol. The same result was observed with other odors that stimulate other types of olfactory receptor neuron in the maxillary palp. When an antennal olfactory receptor was genetically introduced in the maxillary palp, the fly interpreted a new odor as a sweet-enhancing smell. These results all point to taste enhancement as a function of the maxillary palp. It also opens the door for studying integration of multiple senses in a model organism.  相似文献   

9.
A spatial map of olfactory receptor expression in the Drosophila antenna   总被引:19,自引:0,他引:19  
Vosshall LB  Amrein H  Morozov PS  Rzhetsky A  Axel R 《Cell》1999,96(5):725-736
Insects provide an attractive system for the study of olfactory sensory perception. We have identified a novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors. Members of this gene family are expressed in topographically defined subpopulations of olfactory sensory neurons in either the antenna or the maxillary palp. Sensory neurons express different complements of receptor genes, such that individual neurons are functionally distinct. The isolation of candidate odorant receptor genes along with a genetic analysis of olfactory-driven behavior in insects may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号