首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic agents such as bromodomain and extra‐terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next‐generation BETi that are potent and display a favorable half‐life. Here, we tested the BETi, PLX51107, for immune‐based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T‐cell‐mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD‐L1, FasL, and IDO‐1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti‐PD‐1 therapy; a response associated with decreased Cox2 levels, decreased PD‐L1 expression on non‐immune cells, and increased intratumoral CD8+ T cells. Thus, next‐generation BETi represent a potential first‐line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.  相似文献   

2.
To study the contribution of T‐cell receptors (TCR) to resulting T‐cell responses, we studied three different human αβ TCRs, reactive to the same gp100‐derived peptide presented in the context of HLA‐A*0201. When expressed in primary CD8 T cells, all receptors elicited classic antigen‐induced IFN‐γ responses, which correlated with TCR affinity for peptide–MHC in the order T4H2 > R6C12 > SILv44. However, SILv44 elicited superior IL‐17A release. Importantly, in vivo, SILv44‐transgenic T cells mediated superior antitumor responses to 888‐A2 + human melanoma tumor cells upon adoptive transfer into tumor‐challenged mice while maintaining IL‐17 expression. Modeling of the TCR ternary complexes suggested architectural differences between SILv44 and the other complexes, providing a potential structural basis for the observed differences. Overall, the data reveal a more prominent role for the T‐cell receptor in defining host T‐cell physiology than traditionally assumed, while parameters beyond IFN‐γ secretion and TCR affinity ultimately determine the reactivity of tumor‐reactive T cells.  相似文献   

3.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

4.
Immune checkpoint inhibitors improved the survival rate of patients with unresectable melanoma. However, some patients do not respond, and variable immune‐related adverse events have been reported. Therefore, more effective and antigen‐specific immune therapies are urgently needed. We previously reported the efficacy of an immune cell therapy with immortalized myeloid cells derived from induced pluripotent stem cells (iPS‐ML). In this study, we generated OX40L‐overexpressing iPS‐ML (iPS‐ML‐Zsgreen‐OX40L) and investigated their characteristics and in vivo efficacy against mouse melanoma. We found that iPS‐ML‐Zsgreen‐OX40L suppressed the progression of B16‐BL6 melanoma, and prolonged survival of mice with ovalbumin (OVA)‐expressing B16 melanoma (MO4). The number of antigen‐specific CD8+ T cells was higher in spleen cells treated with OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L than in those without OX40L. The OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L significantly increased the number of tumor‐infiltrating T lymphocytes (TILs) in MO4 tumor. Flow cytometry showed decreased regulatory T cells but increased effector and effector memory T cells among the TILs. Although we plan to use allogeneic iPS‐ML in the clinical applications, iPS‐ML showed the tumorgenicity in the syngeneic mice model. Incorporating the suicide gene is necessary to ensure the safety in the future study. Collectively, these results indicate that iPS‐ML‐Zsgreen‐OX40L therapy might be a new method for antigen‐specific cancer immunotherapy.  相似文献   

5.
Chemoresistance in malignant melanoma remains an unresolved clinical issue. In the search for novel molecular targets, a live‐cell high‐content RNAi screen based on gene expression data was performed in cisplatin‐sensitive and cisplatin‐resistant MeWo melanoma cells, Mel‐28 cells and a melanocyte cell line. Cells were exposed to 91 siRNAs and distinct nucleus‐derived phenotypes such as cell division, cell death and migration phenotypes were detected by time‐lapse microscopy over 60 h. Using this approach, cisplatin‐sensitive and cisplatin‐resistant melanoma cells were compared by automated image analysis and visual inspection. In cisplatin‐sensitive MeWo melanoma cells, 14 genes were identified that showed distinct phenotype abnormalities after exposure to gene‐specific siRNAs. In cisplatin‐resistant MeWo cells, five genes were detected. Nine genes were detected whose knock‐down led to differential nuclear phenotypes in cisplatin‐sensitive and ‐resistant cells. In Mel‐28 cells, nine genes were identified which induced nuclear phenotypes including all eight genes which were identified in cisplatin‐resistant MeWo cells. An analogous RNAi screen on melanocytes revealed no detectable phenotype abnormalities after RNAi. Pathway analysis showed in cisplatin‐sensitive MeWo cells and Mel‐28 cells an enrichment of at least three genes in major mitotic pathways. We hereby show that siRNA screening may help to identify tumor‐specific genes leading to phenotype abnormalities. These genes may serve as potential therapeutic targets in the treatment of melanoma.  相似文献   

6.
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant‐free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)‐restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell‐penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor‐specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross‐presentation by bone marrow‐derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb‐epitope (reminiscent for cross‐presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor‐infiltrating IFN‐γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber‐based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.  相似文献   

7.
BACKGROUND: Transplantable B16 melanoma is widely used as a tumor model to investigate tumor immunity. We wished to characterize the leukocyte populations infiltrating B16 melanoma tumors, and the functional properties of tumor-infiltrating dendritic cells (TIDC). MATERIALS AND METHODS: We used the B16 melanoma cell line expressing ovalbumin protein (OVA) to investigate the phenotype and T cell stimulatory capacity of TIDC. RESULTS: The majority of leukocytes in B16 melanoma were macrophages, which colocalized with TIDCs, B and T cells to the peripheral area of the tumor. Both myeloid and plasmacytoid DC populations were present within tumors. Most of these DCs appeared immature, but about a third expressed a mature phenotype. TIDCs did not present tumor-derived antigen, as they were unable to induce the proliferation of tumor-specific CD4+ and CD8+ T cells in vitro unless in the presence of specific peptides. Some presentation of tumor-derived antigen could be demonstrated in the tumor-draining lymph node using in vivo proliferation assays. However, while proliferation of CD8+ T cells was reproducibly demonstrated, no proliferation of CD4+ T cells was observed. CONCLUSION: In summary, our data suggest that DCs in tumors have limited antigen-presenting function. Inefficient antigen presentation extends to the tumor-draining lymph node, and may affect the generation of antitumor immune responses.  相似文献   

8.
Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient’s PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A26–35 and Melan-A27–35, tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vβ usage within the sorted populations showed the recurrence of Vβ3 and Vβ14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes. Nathalie Labarrière and Nadine Gervois have equally contributed to this work.  相似文献   

9.
Tumor-infiltrating lymphocytes from six patients with metastatic malignant melanoma were expanded by culture in recombinant interleukin 2. Three of the preparations were highly cytotoxic against autologous fresh melanoma tumor cells, but not against autologous fresh normal cells or allogeneic fresh tumor targets. The other three were highly cytotoxic against autologous fresh melanoma tumor cells and also had a limited capacity to kill allogeneic fresh tumor targets. The tumor-associated specific killer cells could be expanded from threefold to 95,652-fold with maintenance of specific antitumor lysis. The expanded tumor-infiltrating cells were Leu-4+ T cells, and in five of six patients the majority were Leu-3+. These studies demonstrate that the melanoma-bearing patient raises an immune response against autologous tumor and presents a method for the generation of human lymphocytes with antitumor reactivity that may be useful in the adoptive immunotherapy of tumors.  相似文献   

10.
11.
The occurrence of vitiligo in patients with melanoma is especially reported for patients undergoing immunotherapy. While vitiligo in these patients is thought to be related to an immune response directed against melanoma cells, solid evidence is lacking. Here we report local cytotoxic T cell reactivity in three melanoma patients who developed vitiligo, after experimental immunotherapy using dendritic cell vaccinations. Tetramer analysis showed that vaccine-induced T cells recognizing gp100 and tyrosinase are present at the vitiligo lesions. These T cells secrete IFN-γ and IL-2 upon peptide specific stimulation as well as upon recognition of the autologous tumor. We show that functional CD8+ T cells specific for melanoma differentiation antigens used in a melanoma immunotherapy trial, do not only invade the tumor, but also the vitiligo lesions. This directly links vitiligo to the immuno-therapeutic intervention and supports the hypothesis that vitiligo is a marker of immunity against melanoma cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.  相似文献   

13.
Since the cloning of the Drosophila gene in the 1980s, decades of research have sought to dissect the intricacies of the mammalian Notch signaling cascade. The intrigue of this pathway undoubtedly lies in its ability to influence diverse cellular processes, including differentiation, cell fate, homeostasis, survival, proliferation and angiogenesis. Based on its evolutionary conservation and its fundamental role in development, it is not surprising that deregulation of the Notch signaling pathway can result in neoplastic growth. While originally of particular interest to immunologists based on its chief role in influencing T‐cell fate decisions and tumor oncogenesis in T‐cell acute lymphoblastic leukemia, pigment cell biologists have recently taken notice of the Notch cascade based on studies suggesting the importance of this pathway in regulating melanocyte stem cell survival and melanoma progression. We will review the Notch signaling literature as it relates to skin homeostasis, melanocytic stem cells and melanoma tumorigenesis.  相似文献   

14.
Dendritic cells (DCs) not only exhibit the unique capacity to evoke primary immune responses, but may also acquire TLR-triggered cytotoxic activity. We and others have previously shown that TLR7/8- and TLR9-stimulated plasmacytoid DCs (pDCs) isolated from human peripheral blood express the effector molecule TRAIL. The exact mechanisms through which pDCs acquire and elicit their cytotoxic activity are still not clear. We now show that in the absence of costimulators, TRAIL induction on pDCs occurs with agonists to intracellular TLRs only and is accompanied by a phenotypic as well as functional maturation, as evidenced by a comparatively superior MLR stimulatory capacity. pDCs acquired TRAIL in an IFN-α/β-dependent fashion and, notably, TRAIL expression on pDCs could be induced by IFN-α stimulation alone. At a functional level, both TLR7/8- (imiquimod [IMQ]) and TLR9-stimulated (CpG2216) pDCs lysed Jurkat T cells in a TRAIL- and cell contact-dependent fashion. More importantly, IFN-α-activated pDCs acquired similar cytotoxic properties, independent of TLR stimulation and maturation. Both IMQ- and IFN-α-activated pDCs could also lyse certain melanoma cell lines in a TRAIL-dependent fashion. Interestingly, suboptimal doses of IMQ and IFN-α exhibited synergistic action, leading to optimal TRAIL expression and melanoma cell lysis by pDCs. Our data imply that tumor immunity in patients receiving adjuvant IMQ and/or IFN-α may involve the active participation of cytotoxic pDCs.  相似文献   

15.
We evaluated the spontaneous and immunotherapy‐induced histological changes in the tumor microenvironment of a mouse melanoma regression model consisting of immunocompetent C57BL/6J mice implanted with syngeneic YUMMER1.7 melanoma cells. We focused on tumor regression phenotypes and spatial relationships of melanoma cells with B cells and neutrophils since this was not previously described. We found common themes to the host response to cancer irrespective of the mode of tumor regression. In nonregression tumors, melanoma cells were epithelioid shaped and tightly packed. In regression tumors, melanoma cells were spindle shaped and discohesive. B cells including plasmablasts and plasma cells were numerous and were increased with immunotherapy. Neutrophils were in direct contact with dead or dying melanoma cells. Immunotherapy increased neutrophil counts and induced neutrophil extracellular traps (NETs)‐like formations and geographic necrosis. Beyond tumor regression, the increase in the B cell and neutrophil response could play a role in immunotherapy‐induced adverse reactions.  相似文献   

16.
Melanoma is an aggressive malignancy with poor prognosis. Eradication of tumor cells requires an effective interaction between melanoma cells and different players of the immune system. As the most potent professional antigen‐presenting cells, dendritic cells (DCs) play a pivotal role in mounting a specific immune response where their intratumoral and peritumoral density as well as their functional status are correlated with clinical staging of the disease and with patients’ survival. Under steady‐state conditions, internalization of apoptotic cells by immature DCs designates a state of tolerance to self‐antigens. Nevertheless, pathogens and necrotic cells interacting with pattern recognition receptors trigger downstream signaling pathways that evoke maturation of DCs, leading to the production of pro‐inflammatory cytokines. These mature DCs are essential for T‐cell priming and subsequent development of a specific immune response. Altered functions of DCs have an impact on the development of various disorders including autoimmune diseases and cancers. Herein, we focus on the checkpoints created throughout DCs antigen capturing and presentation to T cells, with subsequent development of either tolerance or immune response, with an emphasis on the role played by DCs in melanoma tumorigenesis and their therapeutic potential.  相似文献   

17.
Patients with melanoma may develop skin depigmentation spontaneously or following therapy, referred to as melanoma‐associated leucoderma (MAL). As clinical presentation of MAL may precede primary/metastatic melanoma detection, recognition of MAL is important to prevent its misdiagnosis as vitiligo and the subsequent application of immunosuppressive treatment. To reveal the immunity involved in MAL development, we investigated the presence of antibody and T‐cell immune responses directed against the melanocyte‐differentiation‐antigens MART‐1 (Melan‐A), tyrosinase and gp100 in patients with MAL, as compared to patients with vitiligo. Autoantibodies to gp100 and tyrosinase were commonly found in both diseases. Interestingly, MART‐1 antibodies were only present in patients with MAL. Melanocyte antigen‐specific T cells were found in all patients, with relatively more specific T cells in patients with active vitiligo. Although MAL and vitiligo may appear clinically similar, our results indicate that the humoral immune responses against MART‐1 differ between these diseases, which can help to differentiate MAL from vitiligo.  相似文献   

18.
The adoptive transfer of tumor-reactive CD8(+) T cells into tumor-bearing hosts provides an attractive alternative to vaccination-based active immunotherapy of melanoma. The development of techniques that result in the preferential expansion of tumor-reactive T cells is therefore of great importance. In this study, we report the generation of HLA-A*0201-restricted CD8(+) T cell populations that recognize either tyrosinase(369-376) or gp100(209-217) from tolerant human class I MHC-transgenic mice by using single amino acid-substituted variant peptides. Low peptide concentration or restimulation with the parent peptide was used to enhance the functional avidity, defined by stimulation of IFN-gamma accumulation, and cross-reactivity of the resulting T cell populations. We found a direct correlation between the ability of a T cell population to respond in vitro to low concentrations of the precise peptide expressed on the tumor and its ability to delay the outgrowth of B16 melanoma after adoptive transfer. Surprisingly, we found that some T cells that exhibited high functional avidity and were effective in controlling tumor outgrowth exhibited low structural avidity, as judged by MHC-tetramer staining. Our results establish strategies for the development and selection of CD8(+) T cell populations that persist despite peripheral tolerance, and that can control melanoma outgrowth. Furthermore, they support the use of human MHC class I-transgenic mice as a preclinical model for developing effective immunotherapies that can be rapidly extended into therapeutic settings.  相似文献   

19.
Many tumor Ags recognized by T cells are self-Ags. Because high avidity, self-reactive T cells are deleted in the thymus, any residual self-reactive T cells existing in the periphery are likely to be low avidity and nonresponsive due to peripheral tolerance mechanisms. Activation of these residual T cells is critical for targeting tumors for immunotherapy. In this study, we studied immune responses against the murine B16 melanoma using a tyrosinase-related protein 2 (TRP-2) peptide as a model tumor/self-Ag. Our results showed that TRP-2 peptide vaccination alone elicited a weak T cell response and modestly decreased B16 lung tumor nodules. The combination of peptide vaccination and treatment with an Ab directed against the inhibitory receptor CTLA-4 enhanced the immune response against TRP-2 peptide, inducing autoimmune depigmentation and further decreasing lung tumor nodules. However, both vaccination methods failed to protect against orthotopic (s.c.) B16 tumor challenge. The addition of an irradiated GM-CSF-expressing, amelanotic tumor cell vaccine significantly delayed s.c. B16 tumor growth. Subsequent studies revealed that provision of GM-CSF increased dendritic cell numbers in lymph nodes and spleen. Furthermore, addition of CTLA-4 blockade increased the frequency of TRP-2-specific, IFN-secreting T cells in spleen and lymph nodes. Overall, our results indicate that combining enhancement of Ag presentation with removal of CTLA-4-mediated inhibition can convert a "weaker" autoimmune response into a more potent antitumor immune response.  相似文献   

20.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号