首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Iberian flora has a high degree of originality (1328 endemic species, 24% of endemism), comparable to other regions in the Mediterranean Basin. The richness of Iberian endemic species is unevenly distributed; the greatest diversity is found in the main mountain ranges although the southwestern Atlantic coast and specially the Balearic Islands are rich in range-restricted endemic species. The largest number of endemic genera is found in the northwestern mountains, which might have acted as a refugium area. The Baetic System, which includes nearly half (46%) of the total Iberian endemic species, is by far the richest region of the territory. Its endemic flora is characterized by the great richness of narrow endemics and the high species turnover rate. The k-means partitioning analysis enables us to identify 11 units, generally well defined by the natural geographic features. The clusters including the northwestern mountains, the Cantabrian Mountains, the southwestern coast and especially the Balearic Islands, the Pyrenees and the Baetic System are compact and consist of a high proportion of diagnostic species, and can therefore be considered areas of endemism on a large scale. The regionalization reflects a primary longitudinal division of Iberia between a basic eastern and an acidic western region, but also partly reveals a climatic division between Eurosiberian and Mediterranean regions. Southeastern Iberia seems to be an important center of differentiation for several typically Mediterranean genera (e.g. Centaurea, Linaria, Armeria, Teucrium and Thymus), but other large genera are also highly diversified.  相似文献   

2.
The distribution maps of a total of 3563 species, which represent 8.9% of the known African angiosperm flora, were entered into cells representing a one-degree latitude–longitude grid of Sub-Saharan Africa. The computer programme WORLDMAP was used to explore continental scale patterns of biodiversity. The maps were used to assess the use of higher taxa as a surrogate measure for predicting patterns of species richness. Genera were found to predict species richness distributions most closely, with higher taxa (families, orders, subclasses) exhibiting progressively worse correlations. However in two areas, the Cape Region of South Africa and coastal Cameroon, there was a higher species to genus ratio than in other areas of Africa. In the Cape Region this meant that generic richness failed to predict species richness. Hotspots, defined as the 5% of grid cells with the highest scores for richness and range-size rarity, were identified for species and higher taxa. Whilst a high percentage of species richness hotspots were predicted by higher taxa, there were important exceptions like the Cape Region. Species range-size rarity hotspots were not well predicted by higher taxa. Hotspots of higher taxa (families and orders) do not therefore accurately predict the location of species hotspots. Higher taxa appear to provide a powerful and accurate tool that can be used to predict large scale patterns of species biodiversity in Sub-Saharan Africa. However care must be taken when using taxa higher than genera, especially if selecting areas of highest conservation priority. The special case of the Cape Region indicates the danger of extending predictive generalizations as the ecological mechanisms that promote and retain species may not be the same in all places. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 225–235.  相似文献   

3.
Rain forests on Borneo support exceptional concentrations of endemic insect biodiversity, but many of these forest-dependent species are threatened by land-use change. Totally protected areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of the current TPA network for conserving range-restricted butterflies in Sabah (Malaysian Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter of the year were the most important predictors of butterfly distributions (= 77 range-restricted species), and that species richness increased with elevation and aboveground forest carbon. On average across all species, TPAs were effective at conserving ~43% of species’ ranges, but encompassed only ~40% of areas with high species richness (i.e., containing at least 50% of our study species). The TPA network also included only 33%–40% of areas identified as high priority for conserving range-restricted species, as determined by a systematic conservation prioritization analysis. Hence, the current TPA network is reasonably effective at conserving range-restricted butterflies, although considerable areas of high species richness (6,565 km2) and high conservation priority (11,152–12,531 km2) are not currently protected. Sabah's remaining forests, and the range-restricted species they support, are under continued threat from agricultural expansion and urban development, and our study highlights important areas of rain forest that require enhanced protection.  相似文献   

4.
The Cape mediterranean region, part of South Africa’s Cape Floristic Realm (CFR), is recognised for its rich diversity and high degree of endemism of terrestrial vegetation. We review the biodiversity of the aquatic flora and fauna using literature sources and museum data. Geological, palaeohistorical and climate data are examined in relation to the formation of the winter-rainfall regime. Prehistoric humans had minimal impact on the aquatic biotas. Patterns and processes relating to the present-day climate, ecosystem status, distribution and diversity of plants, invertebrates and vertebrates in the CFR are reviewed. The proportion of endemic CFR species relative to the total number of species known from southern Africa is estimated. Observed distribution patterns are evaluated against temperate Gondwana vicariance, old African migrations, the role of the ancient Cape fold mountains and Pangaea. The lack of Pleistocene glaciations in Africa, the oligotrophic nature of the river systems and the palaeohistorical origin and distribution of taxa are considered when assessing reasons for disjunct distribution patterns. Impacts of anthropogenic interference with aquatic ecosystems are evaluated. Fragmented jurisdiction of nature conservation authorities is seen as a problem for attaining adequate conservation of CFR aquatic ecosystems. Systematic conservation planning is under way for the region.  相似文献   

5.
Question: Can we recognize areas of high endemism and high endemic richness, using data from collections, and what are the ecological variables that best explain these areas? Location: Peninsula of Baja California, Mexico. Methods: We analysed the distribution of 723 endemic vascular plants species along the peninsula of Baja California and neighbouring islands distributed in 218 cartographic cells 15’ x 20’ in size. By means of a residual analysis, we identified areas of significantly high endemic species richness, and we calculated the degree of endemicity (or rarity) in each cell by giving to each species a weight factor inversely proportional to the land area it covers. Results: Nine regions of high‐endemicity and/or high endemic species richness were found. Discussion and conclusions: The analyses of rarity and endemic species richness showed two contrasting scenarios: High endemicity values in oceanic and sky islands accounts for a high number of species with a restricted distribution, promoted most likely by genetic isolation and high environmental heterogeneity. High endemic richness along the peninsular coast is related to ecotonal transition along vegetation types. After correcting for collection effort (i.e. the number of specimens collected within a cell), we found the phytogeographic region and altitudinal heterogeneity to be the variables that best predicted endemic richness. Both high endemism and high endemic richness have distinct geographic patterns within our study region. The nine endemic regions provide elements for priority definitions in future conservation programs.  相似文献   

6.
With 2285 species of higher plants crammed into 471 km2, the flora of South Africa's Cape Peninsula is exceptionally rich. Similar sized areas in other Mediterranean-climate region biodiversity hot-spots support between 4.7 and 2.7 times fewer species. The high plant species richness of the Cape Peninsula is due to the exceptionally high turnover between moderately species-rich sites in different habitats (beta diversity) and between sites in similar habitats along geographical gradients (gamma diversity). Highest beta diversity, encompassing almost complete turnover, was recorded along soil fertility gradients. Although similar patterns for these independent components explain the richness of other regions in the Cape Floristic Region, it is the very long and steep habitat gradients of the Cape Peninsula that makes this region exceptionally rich. Furthermore, the flora is characterized by a high degree of rarity, a phenomenon that undoubtedly influences the turnover. Future research should focus on developing a biological and ecological understanding of the different forms of rarity and integrating this into management plans for the maintenance of biodiversity.  相似文献   

7.
One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants.  相似文献   

8.
Mountains supply essential resources, making them attractive areas for human settlement. Variation in elevation in mountainous areas determines local and regional climates, leading to complex biodiversity patterns. Mountains in the Cape Floristic Region have high species richness and beta diversity, and very high levels of local endemism. Table Mountain is an iconic mountain in the region, and unusual, as it is in the centre of the city of Cape Town. It is exceedingly rich in biodiversity, including many localized endemic species. However, increasing urbanization in the area is adversely affecting the local biodiversity, especially in the lowlands. Climate change effects to date are minimal, but projected to interact with the impacts of urbanization. Here we review the biodiversity patterns of green and blue spaces in and around Cape Town, including Table Mountain, focusing on aquatic arthropods. We also review the major threats that lead to biotic impoverishment, and provide information on current conservation efforts aimed at protecting the rich biodiversity of Table Mountain and its surrounds. Finally, we focus on the shortcomings of existing conservation actions, and then provide conservation strategies to limit aquatic arthropod biodiversity losses, based on actions that have already worked well. To ensure protection of all arthropods, freshwater habitats across all elevations require further conservation action. Education and creating awareness must continue to close the gaps between scientists, conservation practitioners and civil society as a crucial part of the conservation plan.  相似文献   

9.
Country-based patterns of total species richness, endemicity, and threatened species richness in African rodents and insectivores are studied in this paper. We found several patterns which were similar between insectivores and rodents. Indeed, in both groups we observed: (i) a significantly uneven distribution of species richness across countries and geographic regions with highest species richness peaks being in Middle Africa and lowest peaks in Northern Africa, (ii) species richness increasing with rainfall but being independent on a country’s surface area, (iii) in each country, the insectivore total species richness and endemic species richness increases were positively correlated with rodent total species richness and endemic species richness increases. However, number of endemics peaked in South Africa and D.R. Congo in both groups, but also in Tanzania for Insectivores and in Ethiopia for rodents. In addition, the highest numbers of threatened species occurred in D.R. Congo, Rwanda and Uganda for rodents and in South Africa, Tanzania and Cameroon for insectivores. The conservation implications of these results were discussed.  相似文献   

10.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

11.
The phylogeny and biogeography of Thamnochortus (Restionaceae)   总被引:1,自引:0,他引:1  
Parsimony analysis of morphological data was used to demonstrate the existence of five groups in Thamnochortus (Restionaceae). Although the most parsimonious trees have a resolved relationship among these groups, there appears to be little support for this resolution. The composition of the terminal groups, and the relationships among the species making up these groups, is more robust. The distribution patterns of Thamnochortus differ only in detail from the general patterns ascribed to the Cape Flora (southern South Africa). Within the Cape Floristic Region four centres can be recognized, and more than half of the Thamnochortus species are endemic to these centres. Embedded in these centres (or phytochoria) are small centres of endemism: in the Cedarberg, Bokkeveld mountains, Cape Peninsula, Overberg, Bredasdorp plain and the Langeberg. These centres are best demonstrated by mapping the distributions of range-restricted species, rather than using parsimony analysis of endemicity. There are two major patterns within the phytogeographical elements: an arid group, which ranges from the West Coast to the Klein Swartberg, and a mesic coastal group. The coastal group can be further subdivided. A cladistic biogeographic analysis indicates that the first division follows the divide between all-year rainfall and summer drought, and the second division suggests greater aridity. This implies that geographical differentiation within the genus has followed climatic patterns, suggesting that some of the speciation may be a consequence of climatic change in southern Africa. Curiously, centres of endemism appear to be defined too narrowly for effective cladistic biogeographic analysis, and more success is obtained using wider areas.  相似文献   

12.
We delineate local and regional biogeographic provinces that suggest patterns of species richness, and primary and secondary freshwater fish distributions along the Caribbean coast of Venezuela. We use presence‐absence records and classification and ordination models. Patterns at local and regional scales varied markedly such that primary species dominated humid drainages and secondary species dominated arid drainages or transition provinces. Species rich areas, and the presence of narrowly endemic species correlate with patterns of historical isolation and hydrographic refuges. Patterns of species distributions across arid drainages suggest that close proximity of coastal marine drainages allows dispersion and exchange of species. This pattern is particularly evident among secondary species. Hotspots of species richness and endemisms are identified and are recommended as priorities for conservation (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Aim To determine how the distribution of species richness is associated with environmental factors for the four major C4 grass lineages in South Africa, as a means to explore the mechanisms responsible. Location South Africa, Lesotho and Swaziland. Methods The geographical distributions of species richness for four major C4 grass lineages (Aristidoideae, Chloridoideae, Andropogoneae and Paniceae) were sourced from a recently published flora that divided the study region into different vegetation types. Mean values of potential environmental correlates were calculated for each vegetation type, and the relative importances of these were determined using single‐ and multiple‐predictor generalized linear models, with and without control for spatial autocorrelation. Model selection of the multiple‐predictor generalized linear models was conducted using an Akaike’s information criterion–information theoretic approach. Association with wet, intermediate or dry, shady or open, and disturbed or undisturbed habitats was also determined for each C4 grass clade using habitat data for all the grass species, and analysed using chi‐square tests of independence. Results Andropogoneae and Paniceae are most species‐rich in areas of high precipitation and in mesic habitats. Andropogoneae are associated with high fire frequencies. Species richness in Andropogoneae decreases and in Paniceae increases in relation to livestock density. Chloridoideae species richness is relatively constant across South Africa, but is highest where there are infrequent fires, high temperatures and basic soils, and in mesic and disturbed habitats. Aristidoideae are most species‐rich in arid regions and in habitats with high temperatures, and are associated with disturbed habitats. Main conclusions Environmental variables other than precipitation, including temperature, fire frequency and grazing pressure, are strongly associated with the contrasting distributions of species richness for the various C4 grass clades in South Africa. Our results suggest that ecological sorting is an important determinant of phylogenetic patterns in the species richness of these C4 grass lineages.  相似文献   

14.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

15.
We investigate the relative importance of stochastic and environmental/topographic effects on the occurrence of avian centres of endemism, evaluating their potential historical importance for broad‐scale patterns in species richness across Sub‐Saharan Africa. Because species‐rich areas are more likely to be centres of endemism by chance alone, we test two null models: Model 1 calculates expected patterns of endemism using a random draw from the occurrence records of the continental assemblage, whereas Model 2 additionally implements the potential role of geometric constraints. Since Model 1 yields better quantitative predictions we use it to identify centres of endemism controlled for richness. Altitudinal range and low seasonality emerge as core environmental predictors for these areas, which contain unusually high species richness compared to other parts of sub‐Saharan Africa, even when controlled for environmental differences. This result supports the idea that centres of endemism may represent areas of special evolutionary history, probably as centres of diversification.  相似文献   

16.
It has been suggested that switching from the widely used Biological Species Concept to a Phylogenetic Species Concept, would result in the appearance of hitherto neglected patterns of endemism. The problem has mainly been analyzed with respect to endemic taxa and for rather limited geographical regions, but will here be analysed for the entire resident avifauna of sub-Saharan Africa. A database of African bird distributions was re-edited to create two new datasets representing 1572 biological species and 2098 phylogenetic species. Species richness patterns were virtually identical with the two taxonomies, and only subtle changes were found in the geographical variation in range-size rarity sum. However, there were some differences in the most range-restricted species, with increased complexity of long-recognized centres of endemism. Overall, then, the large-scale biogeographic patterns are robust to changes in species concepts. This reflects the aggregated nature of endemism, with certain areas acting as "species pumps" and large intervening areas being characterised by a predominance of widespread species which distribute themselves in accordance with contemporary environmental conditions. The percentages of phylogenetic and threatened species captured in a BSC near-minimum set of 64 grid-cells and a PSC near-maximum set, with the same number of grid-cells, are very similar.  相似文献   

17.
Aim The aims of this paper are to: examine how current and historical ecological factors affect patterns of species richness, endemism and turnover in the Gulf of Guinea highlands, test theoretical biogeographical predictions and provide information for making informed conservation decisions. Location The Gulf of Guinea highlands in West Africa. Methods We used multivariate and matrix regression models, and cluster analyses to assess the influence of current climate and current and historical isolation on patterns of richness and turnover for montane birds across the highlands. We examined three groups of birds: montane species (including widespread species), montane endemics and endemic subspecies. We applied a complementarity‐based reserve selection algorithm using species richness with irreplaceability measures to identify areas of high conservation concern. Results Environmental factors influenced richness for all groups of birds (species, endemic species and subspecies). Areas with high and consistent annual rainfall showed the highest species and endemic richness. Species clusters for all groups of birds generally differentiated three major montane regions, which are topographically isolated. Multiple mantel tests identified these same regions for endemic species and subspecies. The influence of historical isolation varied by species group; distributions of endemic montane species and subspecies were more associated with historical breaks than were all montane species, which included widespread non‐endemic species. Main conclusions Our analyses indicated important geographical structure amongst the bird assemblages in the highlands and, therefore, conservation prioritization should include mountains from within the geographical subregions identified in these analyses because these regions may harbour evolutionarily distinct populations of birds.  相似文献   

18.
In order to investigate continental-scale patterns of plant species richness and rarity, distribution maps of 3661 plant species were digitized into a one degree grid of sub-Saharan Africa using the WORLDMAP computer programme. Cells with high species richness were also likely to be those containing the greatest number of species of restricted range, but areas such as the South African Cape and the Eastern Arc mountains were found to have more restricted-range species than predicted from their richness scores. The two environmental predictors which had the strongest individual relationships with both species richness and range-size rarity were absolute maximum annual temperature and mean monthly potential evapotranspiration. However, correlative predictive powers of these variables were low, with R =−0.58 and R =−0.54, respectively ( P  < 0.01). Multiple regression also failed to produce a strong explanatory model for observed continental-scale patterns of diversity. Spatial variability analysis showed that this was likely to be because different environmental parameters predicted different centres of richness and rarity. West African species richness was better predicted by absolute maximum annual temperature, whereas East African species richness was better predicted by mean monthly potential evapotranspiration.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 187–197.  相似文献   

19.
Aim To assemble a continental‐scale data set of all available anuran records and investigate trends in endemism and species richness for the Anura. Location Continental Australia. Methods 97,338 records were assembled, covering 75% of the continent. A neighbourhood analysis was applied to recorded locations for each species to measure richness and endemism for each half‐degree grid square (c. 50 km) in the continent. This analysis was performed for all anurans, and also for each of the three main anuran families found in Australia. A Monte Carlo simulation was used to test a null hypothesis that observed centres of endemism could result simply from an unstructured overlapping of species ranges of different sizes. Results Eleven main centres of anuran endemism were identified, the most important being the Wet Tropics and the south‐west near Bunbury‐Augusta and near Walpole. With the exception of south‐western Australia, all of the identified significant endemic centres are in the northern half of the continent. The regions identified as significant for endemism differed from those identified for species richness and are more localized. Species richness is greatest in the Wet Tropics and the Border Ranges. High species richness also occurs in several areas not previously identified along the east and northern coasts. Main conclusions Weighted endemism provides a new approach for determining significant areas for anuran conservation in Australia and areas can be identified that could be targeted for beneficial conservation gains. Patterns in endemism were found to vary markedly between the three main anuran families, and south‐eastern Australia was found to be far less significant than indicated by previous studies. The need for further survey work in inland Australia is highlighted and several priority areas suggested. Our results for species richness remain broadly consistent with trends previously observed for the Australian Anura.  相似文献   

20.
Williams, A. J., Steele, W. K., Cooper, J. & Crawford, R. J. M. 1990. Distribution, population size and conservation of Hartlaub's Gull Lorus hurtlaubii. Ostrich 61: 66–76.

Hartlaub's Gull Larus hartlaubii is endemic to southern Africa, where it breeds between Swakopmund, Namibia and Dyer Island, southwestern Cape Province, South Africa. The species has been re breeding at 48 localities within this range. Between 1984 and 1989 an estimated 12000 pain brered at 31 localities. Twenty-eet percent of the population breeds at Robben Island off the Cape Peninsula, sQuth Africa. Hartlaub's Gull frequently has low breeding success and is considered endangered in Narmbia, where 12% of the poulation occurs. However, the population is increaslng around the urbanmd Cape Peninsula where HartLub's Gull has the potential to become a pest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号