首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The elongation of fern protonemata is controlled by red andfar-red light in an atypical fashion. Red light promotes theelongation of young plants but inhibits the elongation of olderplants. Far-red light promotes elongation regardless of filamentage, and the maximum promotion by far-red is greater than thepromotion which red light causes in young filaments. The elongationof rhizoids is under typical red, far-red control. Red lightpromotes elongation, and a period of far-red illumination followingred light treatment negates the promotive effects of red light. 1 Present address of the authors: Dept. of Bacteriology andBotany, Syracuse University, Syracuse, New York, U. S. A. (Received November 5, 1962; )  相似文献   

2.
Sugar-beet seeds were germinated (1) in a growth cabinet at 20°C lit continuously by fluorescent tubes (L), (2) in a cabinet at 20°C lit by fluorescent tubes for 16 h/day (S), (3) in a cage with glass roof and open sides with natural illumination (N), or (4) in the open ground (D). The seedlings from the cabinets and cage were transplanted to the field when they had two true leaves. Samples were taken on six occasions during growth, and leaf areas and dry weights determined. There were no differences between treatments in total number of leaves produced or leaf area duration. Leaf area per plant increased fastest on L plants at first, but from mid-June until end of July drilled plants had the largest leaf surface. From August onwards S plants had the largest area. Although treatment had little effect on growth of the tops, roots grew fastest throughout the season on the plants raised in growth cabinets and the final mean root dry weight of L and S plants was 39% greater than of N and D plants. Throughout the season L and S plants had a larger root:top ratio than plants raised in the cage or drilled directly in the field. The larger roots of plants raised in the cabinets evidently provided a larger sink for carbohydrate and increased the mean photosynthetic efficiency of the leaves over the whole season by 11 % and increased yield of roots by 6 tons/acre.  相似文献   

3.
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.  相似文献   

4.
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.  相似文献   

5.
Cheikh N  Brenner ML 《Plant physiology》1992,100(3):1230-1237
An important part in the understanding of the regulation of carbon partitioning within the leaf is to investigate the endogenous variations of parameters related to carbon metabolism. This study of diurnal changes in the activities of sucrose-synthesizing enzymes and levels of nonstructural carbohydrates in intact leaves of field-grown soybean plants (Glycine max [L.]) showed pronounced diurnal fluctuations in sucrose phosphate synthase (SPS) activity. However, there was no distinct diurnal change in the activity of fructose-1,6-bisphosphatase (F1,6BPase). SPS activity in leaves from plants grown in controlled environments presented two peaks during the light period. In contrast to field-grown plants, F1,6BPase activity in leaves from growth chamber-grown plants manifested one peak during the first half of the light period. In plants grown under both conditions, sucrose and starch accumulation rates were highest during early hours of the light period. By the end of the dark period, most of the starch was depleted. A pattern of diurnal fluctuations of abscisic acid (ABA) levels in leaves was also observed under all growing conditions. Either imposition of water stress or exogenous applications of ABA inhibited F1,6BPase activity. However, SPS-extractable activity increased following water deficit but did not change in response to ABA treatment. Gibberellin application to intact soybean leaves increased levels of both starch and sucrose. Both gibberellic acid (10−6m) and gibberellins 4 and 7 (10−5m) increased the activity of SPS but had an inconsistent effect on F1,6BPase. Correlation studies between the activities of SPS and F1,6BPase suggest that these two enzymes are coordinated in their function, but the factors that regulate them may be distinct because they respond differently to certain environmental and physiological changes.  相似文献   

6.
Mor Y  Halevy AH 《Plant physiology》1980,66(5):996-1000
Mixed fluorescent and incandescent light increased growth and sink strength of the uppermost young shoot of rose plants (Rosa hybrida cv. Marimba) in comparison to pure fluorescent light. This was manifested by increased apical dominance. Monochromatic low-energy red light, given by means of optic fibers for 24 hours to shoot tips that had been previously darkened for 5 days, increased the transport of 14C-labeled assimilates to the intact tips and the uptake of [14C]sucrose by detached tips. Far-red had little or no effect, and blue was not effective at all in these reactions. Red light given directly to detached shoot tips, in vitro, increased the uptake of [14C]sucrose by the isolated tips. Adding far-red to the red greatly promoted the uptake, whereas blue and blue plus far-red were not active. The main character of the light reaction promoting sink activity in the shoot is that it is perceived by the shoot tip itself. It is operated by red light; far-red promotes the red effect but has little or no effect when alone. Light apparently promotes shoot sink activity by increasing the unloading process.  相似文献   

7.
The phytochrome (phy) family of plant photoreceptors controls various aspects of photomorphogenesis. Overexpression of rice phyA-green fluorescent protein (GFP) and tobacco phyB-GFP fusion proteins in tobacco results in functional photoreceptors. phyA-GFP and phyB-GFP are localized in the cytosol of dark-adapted plants. In our experiments, red light treatment led to nuclear translocation of phyA-GFP and phyB-GFP, albeit with different kinetics. Red light-induced nuclear import of phyB-GFP, but not that of phyA-GFP, was inhibited by far-red light. Far-red light alone only induced nuclear translocation of phyA-GFP. These observations indicate that nuclear import of phyA-GFP is controlled by a very low fluence response, whereas translocation of phyB-GFP is regulated by a low fluence response of phytochrome. Thus, light-regulated nucleocytoplasmic partitioning of phyA and phyB is a major step in phytochrome signaling.  相似文献   

8.
Photoreception and photoresponses in the radish hypocotyl   总被引:1,自引:1,他引:0  
Ann M. Jose 《Planta》1977,136(2):125-129
In etiolated hypocotyls of Raphanus sativus L. the growth responses to continuous red, far-red and blue light have been distinguished on the bases of photoreceptive sites and regions of physiological response. Blue light appeared to retard a fairly mature stage of elongation, acting immediately and directly on the cells irradiated. Far-red light caused a marked inhibition of all stages of elongation after a lag period, and the stimulus could be transmitted from the hook region. The effect of red light was complex and consisted of one promotive and two inhibitory responses.Abbreviations B blue - FR far-red - R red  相似文献   

9.
The net photosynthetic rate of a leaf becomes acclimated to the plant's environment during growth. These rates are often measured, evaluated and compared among leaves of plants grown under different light conditions. In this study, we compared net photosynthetic rates of cucumber leaves grown under white light‐emitting diode (LED) light without and with supplemental far‐red (FR) LED light (W‐ and WFR‐leaves, respectively) under three different measuring light (ML) conditions: their respective growth light (GL), artificial sunlight (AS) and blue and red (BR) light. The difference in the measured photosynthetic rates between W‐ and WFR‐leaves was greater under BR than under GL and AS. In other words, an interaction between supplemental FR light during growth and the spectral photon flux density distribution (SPD) of ML affected the measured net photosynthetic rates. We showed that the comparison and evaluation of leaf photosynthetic rates and characteristics can be biased depending on the SPD of ML, especially for plants grown under different photon flux densities in the FR waveband. We also investigated the mechanism of the interaction. We confirmed that the distribution of excitation energy between the two photosystems (PSs) changed in response to the SPD of GL, and that this change resulted in the interaction, as suggested in previous reports. However, changes in PS stoichiometry could not completely explain the adjustment in excitation energy distribution observed in this study, suggesting that other mechanisms may be involved in the interaction.  相似文献   

10.
HURD  R. G. 《Annals of botany》1974,38(3):613-623
Young tomato plants were grown at low light flux densities (21W m-2 for 8 h days) in growth cabinets under three types offluorescent lamps or under a fluorescent/incandescent mixedsource. Whilst net assimilation rates under the fluorescentlamps were in agreement with those calculated from the lampcharacteristics and the photosynthetic action spectrum, therate under the mixed source was about 20 per cent higher thanexpected. Relative growth rates and relative leaf area growthrates were also higher and leaf area ratios lower under thefluorescent/incandescent lamp combination than under the purefluorescent sources. Small differences in stem elongation, leaftemperature and dry weight distribution which were associatedwith the addition of incandescent radiation were not consideredto be responsible for these increases. When the light flux densityfrom the mixed source was reduced by 20 per cent, the plantgrowth parameters were then similar to those in fluorescentlight alone.  相似文献   

11.
Red light-emitting diodes (LEDs) are a potential light sourcefor growing plants in spaceflight systems because of their safety,small mass and volume, wavelength specificity, and longevity.Despite these attractive features, red LEDs must satisfy requirementsfor plant photosynthesis and photomorphogenesis for successfulgrowth and seed yield. To determine the influence of galliumaluminium arsenide (GaAIAs) red LEDs on wheat photomorphogenesis,photosynthesis, and seed yield, wheat (Triticum aestivum L.,cv. ‘USU-Super Dwarf’) plants were grown under redLEDs and compared to plants grown under daylight fluorescent(white) lamps and red LEDs supplemented with either 1% or 10%blue light from blue fluorescent (BF) lamps. Compared to whitelight-grown plants, wheat grown under red LEDs alone demonstratedless main culm development during vegetative growth throughpreanthesis, while showing a longer flag leaf at 40 DAP andgreater main culm length at final harvest (70 DAP). As supplementalBF light was increased with red LEDs, shoot dry matter and netleaf photosynthesis rate increased. At final harvest, wheatgrown under red LEDs alone displayed fewer subtillers and alower seed yield compared to plants grown under white light.Wheat grown under red LEDs+10% BF light had comparable shootdry matter accumulation and seed yield relative to wheat grownunder white light. These results indicate that wheat can completeits life cycle under red LEDs alone, but larger plants and greateramounts of seed are produced in the presence of red LEDs supplementedwith a quantity of blue light. Key words: Triticum aestivum L., red light, blue light, subtillering, bioregenerative advanced life support  相似文献   

12.
Transgenic potatoes (Solanum tuberosum) with either increased (sense transformants) or reduced (antisense transformants) phytochrome A (phyA) levels were used, in combination with specific light treatments, to investigate the involvement of phyA in the perception of signals that entrain the circadian clock. Far-red or far-red plus red light treatments given during the night reset the circadian rhythm of leaf movements in wild-type plants and phyA over-expressors, but had little effect in phyA under-expressors. Far-red light was also able to reset the rhythm of leaf movement in wild-type Arabidopsis thaliana but was not effective in mutants without phyA. Blue light was necessary to reset the rhythm in phyA-deficient potato plants. Resetting of the rhythm by far-red plus red light was only slightly affected in transgenic plants with reduced levels of phytochrome B. The production of tubers was delayed by day extensions with far-red plus red light, but this effect was reduced in transgenic lines deficient in phyA. We conclude that phyA is involved in resetting the circadian clock controlling leaf movements and in photoperiod sensing in light-grown potato plants.  相似文献   

13.
Silene armeria was cultured on a medium containing 5% sucrose,and subjected to various light conditions. 1. Plants subjected to continuous illumination of far-red radiantenergy exclusive of other spectral regions initiated flowerbuds most readily. Far-red light mixed with other spectral regionswas less effective in promoting flowering than far-red lightalone. 2. The plants subjected to short photoperiods initiated no flowerbuds irrespective of the quality of light in the light period. 3. Red light was more effective in promoting flowering thandaylight fluorescent light but was less effective than the far-redlight. (Received October 8, 1960; )  相似文献   

14.
The influence of light quality on growth and development of in vitro grown Doritaenopsis hort. (Orchidaceae) plants was investigated. Growth parameters like leaf and root fresh/dry mass and leaf area were highest with plants grown under red plus blue light emitting diodes (LEDs). Leaf length was greater with the plants grown under red LED. Carbohydrate (starch, sucrose, glucose and fructose) and leaf pigment (chlorophylls and carotenoids) biosynthesis of the plants was significantly increased in plants grown under red plus blue LEDs compared to red or blue LED and fluorescent light treatments. This study suggests that the production of quality Doritaenopsis plants is possible by culturing the plants in vitro under a mixture of blue plus red light sources.  相似文献   

15.
Maillette  L.  Emery  R.J.N.  Chinnappa  C.C.  Kimm  N.K. 《Plant Ecology》2000,149(2):143-156
Available evidence suggests that vegetative and reproductive plant growth should decrease with climatic severity. This was tested first with observations of Stellaria longipes ramets established naturally along an 1100 m gradient of elevation in the Rocky Mountains of Southern Canada, and secondly with ramets collected from the same sites but grown in climate-controlled cabinets under long warm days. Growth cabinet plants yielded three times as many new modules and biomass, at a rate twice as fast as that of field plants. In addition the mortality of field-grown modules was approximately 40 times that of growth cabinet plants. This points to a very high `cost' of living in a natural environment. Contrary to anticipated results, the considerable change in habitat generated by the gradient in elevation was not matched by an equally dramatic gradient in vegetative or reproductive module growth in the field. Plants grown in cabinets also failed to show any clinal trends in module growth. Measures of vegetative module growth, such as rate of module accumulation and biomass per module, were generally conserved among sites. By contrast, production of reproductive modules was highly variable, both within and among sites. The failure to predict module behaviour from climatic severity may have been caused by unanticipated complexities of the gradient such as soil moisture and soil pH which were distributed independently of elevation. On the other hand, differentiation in growth among ecotypes along the gradient may be explained by changes in the characteristics of individual modules, not the demography of the modules that make up the plants.  相似文献   

16.
Salisbury FB 《Plant physiology》1981,67(6):1230-1238
Six experiments studied the effects of low levels of red and far-red light upon the initiation of measurement of the dark period in the photoperiodic induction of flowering in Xanthium strumarium L. (cocklebur), a short-day plant, and compared effects with those of comparable light treatments applied for 2 hours during the middle of a 16-hour inductive dark period. Red light, or red plus far-red, at levels that inhibit flowering when applied during the middle of the inductive dark period, either had no effect on the initiation of dark measurement (i.e., were perceived as darkness), or they delayed the initiation of dark measurement by various times up to the full interval of exposure (2 hours). Far-red light alone had virtually no effect either at the beginning or in the middle of the dark period. These results confirm that time measurement in the photoperiodic response of short-day Xanthium plants is not simply the time required for metabolic dark conversion of phytochrome. Results also suggest that the pigment system (phytochrome?) and/or responses to it may be significantly different as they function during twilight (initiation of dark measurement), and as they function during a light break several hours later. Possible mechanisms by which cocklebur plants detect the change from light to darkness are discussed.Comparing experimental results with spectral light measurements during twilight and with measurements of light from the full moon led to two conclusions: First, light levels pass from values perceived by the plant as full light to values perceived as complete darkness in only about 5.5 to 11.5 minutes, although twilight as perceived by the human eye lasts well over 30 minutes. Second, cocklebur plants probably do not respond to light from the full moon, even when most sensitive, 7 to 9 hours after the beginning of darkness.  相似文献   

17.
The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO(2) concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions.  相似文献   

18.
Requirements for spore germination in the rare and native New Jersey fern, Schizaea pusilla Pursh., were examined. Spores did not germinate in darkness and gibberellins (GA) did not induce germination in the dark. However, a dark pretreatment promoted germination in a subsequent light treatment and low temperatures during the dark pretreatment greatly enhanced germination in culture. Three wks of dark pretreatment were required for maximum germination. GA3 promoted germination in red light more effectively than GA4+7. Greater than ten days of continuous illumination was necessary for germination. Spores given red light reached half-maximum germination six days earlier than spores under white light. Red light promoted germination while blue light did not. Far-red light alone could stimulate germination and enhanced the promotive effect of red light; typical phytochrome photoreversibility was not observed. Blue light reduced the effect of red light.  相似文献   

19.
Seed germination of an aurea mutant of tomato ( Lycopersicon esculentum Mill.) is promoted by continuous irradiation with red, far-red or long-wavelength far-red (758 nm) light as well as by cyclic irradiations (5 min red or 5 min far-red/25 min darkness). Far-red light applied immediately after each red does not change the germination behaviour. Seed germination of the isogenic wild-type, cv. UC-105, is promoted by continuous and cyclic red light while it is inhibited by continuous and cyclic far-red light and by continious 758 nm irradiation. Far-red irradiation reverses almost completely the promoting effect of red light. The promoting effect (in the aurea mutant) and the inhibitory effect (in the wild-type) of continuous far-red light do not show photon fluence rate dependency above 20 nmol m−2 s−1. It is concluded that phytochrome controls tomato seed germination throgh low energy responses in both the wild type and the au mutant. The promoting effect of continuous and cyclic far-red light in the au mutant can be attributed to a greater sensitivity to Pfr.  相似文献   

20.
The effects of light generated by monochromic blue, red or mixed radiation from a fluorescent lamp (FL) with light emitting diodes (LEDs) (blue, red, or far-red) on growth and morphogenesis of marigold and salvia seedlings were investigated and the responses compared with those of plantlets grown under a broad spectrum conventional fluorescent lamp (a 16 h photoperiod per day). Dry weight of marigold seedlings was significantly increased in monochromic red light (R), fluorescent light plus red LED (FLR) or fluorescent light (FL) but reduced when monochromic blue light (B) was used, whereas in salvia dry weight was significantly greater under fluorescent light plus blue LED (FLB), fluorescent light plus red LED (FLR) and fluorescent light plus far-red LED (FLFr) as compared to other treatments. Stem length in marigold was greatest in monochromic blue light, being three times greater than in FLR or FL treatments. In salvia, FLFr increased stem length but this was significantly decreased by R as compared to other treatments. The number of visible flower buds in marigold was much higher in FLR as well as in the control (FL), and it was about five times greater than in B or R. However, the number of open flowers in salvia varied slightly in all the treatments. Different light qualities also influenced the duration of the blooming period in both the species. No flower buds were formed when monochromic B or R was used in salvia and FLFr inhibited flower bud formation in marigold. In comparison with monochromic blue or red light, the number of stomata was greater in mixed radiation of FL with LEDs in both the plants. Our study demonstrates the effectiveness of a LED system for plantlet growth and morphogenesis in space-based plant research chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号