首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The European Centre for the Validation of Alternative Methods (ECVAM) has sponsored a large international prevalidation and validation study of three embryotoxicity tests, involving embryonic stem cells, limb bud micromass cultures, and post-implantation whole-embryo cultures. The main objective of the study was to assess the performance of these in vitro tests in discriminating between non-embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. An initial part of the study was to select 20 test substances for the formal validation trial, conducted under blind conditions. A database of in vivo and in vitro developmental toxicity test results was complied on 310 chemicals that had been used in previous validation studies, or suggested for such use, or that had good quality "segment II"-type in vivo data, or for which there were human data. From this database, a shortlist of about 30 candidates was constructed. Because the ECVAM study would not include metabolic activation, chemicals known to require activation for their developmental effects were excluded as candidates, although some known stable metabolites were included. Attempts were made: to include substances of diverse mechanism; to avoid overemphasis on pharmaceuticals; to avoid biologically inert substances as non-embryotoxicants; and to make the list different from those used previously. The candidates were of three categories: Class 3, strongly embryotoxic, was defined as developmentally toxic in all species tested, inducing multiple developmental effects, and with a high A/D ratio. Class 1, non-embryotoxic, was defined as not developmentally toxic at maternally toxic exposures, but which may show some minor embryo/fetal toxicity, which cannot be separated from maternal toxicity. Class 2, weakly embryotoxic, were chemicals of intermediate activity. From this candidate list, chemicals of known receptor (androgen, oestrogen, glucocorticoid, aryl hydrocarbon) mechanisms were excluded, on the basis that simple tests for such activity are already available. In addition, chemicals not freely available were excluded, and an emphasis on human data was applied. The final list of 20 chemicals was: Class 3--6-aminonicotinamide, 5-bromo- 2'-deoxyuridine, hydroxyurea, methylmercury chloride, methotrexate, all-trans-retinoic acid; Class 2--boric acid, dimethadione, lithium chloride, methoxyacetic acid, valproic acid (VPA), 2-propyl-4-pentynoic acid (4-yn-VPA), salicylic acid sodium salt; and Class 1--acrylamide, D-(+)-camphor, dimethyl phthalate, diphenhydramine hydrochloride, 2-ethyl-4- methylpentanoic acid (isobutyl-ethyl-VPA), Penicillin G sodium salt, saccharin sodium hydrate.  相似文献   

2.
Embryonic stem cell test (EST) is the only generally accepted in vitro method for assessing embryotoxicity without animal sacrifice. However, the implementation and application of EST for regulatory embryotoxicity screening are impeded by its technical complexity, long testing period, and limited endpoint data. In this study, a high throughput embryotoxicity screening based on mouse embryonic stem cells (mESCs) expressing enhanced green fluorescent protein (EGFP) driven by a human survivin promoter and a human cytomegalovirus promoter, respectively, was developed. These EGFP expressing mESCs were cultured in three-dimensional (3D) fibrous scaffolds in microbioreactors on a multiwell plate with EGFP fluorescence signals as cell responses to chemicals monitored noninvasively in a high throughput manner. Nine chemicals with known developmental toxicity were used to validate the survivin-based embryotoxicity assay, which showed that strongly embryotoxic compounds such as 5-fluorouracil, retinoic acid, and methotrexate downregulated survivin expression by more than 50% in 3 days, while weakly embryotoxic compounds such as boric acid, methoxyacetic acid, and tetracyclin showed modest downregulation effect and nonembryotoxic saccharin, penicillin G, and acrylamide had negligible downregulation effect on survivin expression, confirming that survivin can be used as a molecular endpoint for high throughput screening of embryotoxicants. The potential developmental toxicity of three Chinese herbal medicines were also evaluated using this assay, demonstrating its application in in vitro developmental toxicity test for drug safety assessment.  相似文献   

3.
From 1996 to 2000, ZEBET (Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments at the BgVV, Berlin, Germany) coordinated the European Centre for the Validation of Alternative Methods (ECVAM) prevalidation and validation study on three embryotoxicity tests: a) a test employing embryonic stem cell lines (EST); b) the micromass (MM) test; and c) the postimplantation rat whole-embryo culture assay (WEC test). The main objectives of the study were to assess the performance of these three in vitro tests in discriminating between non- embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. Phase I of the study (1997) was designed as a prevalidation phase, for test protocol optimisation, and for the establishment of a comprehensive database of in vivo and in vitro data on embryotoxic compounds. Phase II (1998-2000) involved a formal validation trial, conducted under blind conditions on 20 test compounds selected from the database, which were coded and distributed to the participating laboratories. In the preliminary phase of the validation study, six chemicals out of the 20, which showed embryotoxic potential, were tested. These results were used to define new biostatistically based prediction models (PMs) for the MM and WEC tests, and to evaluate those developed previously for the EST. As a next step, the PMs were evaluated by using the results for the remaining 14 chemicals of the definitive phase of the validation study. The three in vitro embryotoxicity tests proved to be applicable to testing a diverse group of chemicals with different embryotoxic potentials (non-embryotoxic, weakly embryotoxic, and strongly embryotoxic). The reproducibility of the three in vitro embryotoxicity tests were acceptable according to the acceptance criteria defined by the Management Team. The concordances between the embryotoxic potentials derived from the in vitro data and from the in vivo data were good for the EST and the WEC (PM2) test, and sufficient for the MM test and the WEC (PM1) tests according to the performance criteria defined by the Management Team before the formal validation study. When applying the PM of the EST to the in vitro data obtained in the definitive phase of the formal validation study, chemicals were classified correctly in 78% of the experiments. For the MM and the WEC tests, the PMs provided 70% and 80% (PM2) correct classifications, respectively. And, very importantly, an excellent predictivity (100%, except for PM1 of the WEC test, with 79%, considered as good) was obtained with strong embryotoxic chemicals in each of the three in vitro tests.  相似文献   

4.
A detailed report is presented on the performance of the rat limb bud micromass (MM) test in a European Centre for the Evaluation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects on animals and/or humans, were tested in four laboratories. The outcome showed that the MM test is an experimentally validated test, which holds promise for use for identifying strongly embryotoxic chemicals, but which needs to be improved before it can be recommended for use for regulatory purposes.  相似文献   

5.
A detailed report is presented on the performance of the postimplantation rat whole-embryo culture (WEC) test in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the WEC test can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.  相似文献   

6.
A detailed report is presented on the performance of the embryonic stem cell test (EST) in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the EST can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.  相似文献   

7.
Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.  相似文献   

8.
A new international project to evaluate the relevance for human systemic and local toxicity of in vitro tests of general toxicity of chemicals has been organized by the Scandinavian Society of Cell Toxicology under the title Multicenter Evaluation of In Vitro Cytotoxicity (MEIC). The basic assumptions underlying the project, as well as the practical goals and the design of the program are outlined. The list of the first 50 reference chemicals is presented. The chemicals are an otherwise unbiased selection of compounds with known human acutely lethal dosage and blood concentrations, including LD50-values in the rat or mouse. Most agents also have other data on human toxicity and toxicokinetics, including more extensive animal toxicity data. International laboratories already using or developing in vitro tests of various partial aspects of general toxicity are invited to test the substances, the results of which will be evaluated by us. The predictivity of the in vitro results for both partial and gross human toxicity data will be determined with combined use of univariate regression analysis and soft multivariate modeling. The predictivity of the in vitro results will be compared with the predictivity of conventional animal tests for the same chemicals. Finally, batteries of tests with optimal prediction power for various types of human toxicity will be selected. The need for and possible uses of such batteries are discussed.  相似文献   

9.
10.
Regulatory agencies have used laboratory toxicity tests for decades to assess potential risks of pesticide use to wildlife, but questions remain about the ecological significance of test results. Population models may provide a valuable tool for projecting the consequences of pesticide use if information exists on the relationship between exposure and effects on survival and fecundity rates. We review issues of using avian reproduction test results for estimating changes in fecundity rates of wild birds. The avian reproduction test originated from studies focused on eggshell quality and embryotoxic effects of bioaccumulating, organochlorine pesticides. Current pesticides exhibit other potential reproductive effects that are not measured or that are poorly characterized. Because several experimental design features of the laboratory test may lead to overestimation or underestimation of the magnitude of risk of a particular pesticide to wild birds, determination of the magnitude of effects on fecundity cannot be based solely on the results of standardized laboratory tests. Quantifying the overall impact of pesticides on avian fecundity rates for use in population modeling will require additional information from modified laboratory tests that address specific questions, field monitoring or experimental field studies, and simulation models of avian productivity.  相似文献   

11.
E M Johnson 《Teratology》1987,35(3):405-427
The backlog of untested chemicals and the rate at which new substances enter the marketplace exceed our capacity for developmental effects testing by standard in vivo methods. However, conservative use of two observations in a manner consistent with present day understanding of abnormal developmental biology can more accurately focus attention and resources on those agents in greatest need of complex testing for effects on in utero development. These two observations are 1) most chemicals are no more toxic to embryonic development than they are to adult homeostasis and 2) most human exposure to chemicals is de minimus, i.e., so small that it is inconsequential. Recently devised in vitro assays to quantitatively rank chemicals according to their developmental hazard index, when used in conjunction with more conventional in vivo methods and appropriate considerations of exposure, permit evaluation of a significantly larger number of chemicals than is currently achieved. The methods described apply a tier approach to establish testing priorities that markedly reduce the time, cost, and number of laboratory animals needed for evaluation of developmental toxicity.  相似文献   

12.
Until now, no in vitro methods for determining neurotoxic effects, on Phase I and Phase II biotransformation-driven metabolite formation or for the evaluation of the metabolism-mediated hazard of a chemical, have been validated. The current test guidelines are based on studies in vivo, involving animals exposed to the test substance. Novel in vitro testing instead of animal testing is required by Directive 86/609/EEC. In the EU White Paper on a Strategy for a Future Chemicals Policy, which may result in up to 20,000 chemicals being screened for toxicity, the use of non-animal test methods is seen as essential and is encouraged. The aim of the present work was to demonstrate the significance of novel technologies, including the use of genetically engineered cell lines and three-dimensional cell culture techniques for direct application in the regulatory hazard-assessment process. Furthermore, attempts were made to make in vitro toxicity tests for specific applications more-readily available for inclusion in the chemical hazard-assessment process, by exploiting advances made in the life sciences.  相似文献   

13.
The thalidomide tragedy stimulated an intense research in the etiology, prevention and treatment of congenital malformations. The Government requires that drugs and food additives be evaluated pre-clinically for toxicity, including developmental toxicity, before being marketed. The number of compounds which must be tested has increased dramatically with the continuous development of therapeutic, cosmetic and food additive chemicals. Such tests include: in vitro studies which can serve as efficient pre-screens to rank chemicals for further batteries of in vivo tests on pregnant animals. However, the safety of any drug would be determined only by a post-marketing epidemiological survey. Taking into account the altered susceptibility to different drugs in a pregnant individual, it could be said that administration of any drug during the first trimester is an experiment in human teratology.  相似文献   

14.
According to the new chemicals policy of the European Union (EU), most chemicals, i.e. the 20,000 chemicals manufactured or imported at 1-10 tons annually, should be tested primarily by using in vitro methods. Also, for other chemicals, the use of in vitro methods is encouraged in the testing strategies given in the draft EU legislation. However, the validation and international acceptance of in vitro tests has been slow. Only recently has the OECD approved four new in vitro test methods, validated by the European Centre for the Validation of Alternative Methods. An analysis of ten randomly selected risk assessment reports of the EU Existing Chemicals Risk Assessment Programme showed that in vitro studies, for example, on cytotoxicity to different cell cultures, cell transformation, metabolism and skin penetration (a total of 115 studies) were used for the assessments. Key metabolic pathways and mechanisms of toxicity have been elucidated, for some chemicals, by using in vitro methods. On the other hand, the results of in vitro studies were regarded as secondary or unreliable in some cases. For several toxic endpoints, in vitro methods will probably serve as screening tools and for mechanistic studies, while target organ toxicity or physiologically regulated adverse effects caused by long-term exposure are difficult to observe without the use of animal models.  相似文献   

15.
Kolman A 《Tsitologiia》2010,52(10):888-90, inside back cover
Dr. Bj?rn Ekwall (1940-2000) was a prominent Swedish scientist--cell toxicologist, who made an outstanding contribution in the field of in vitro toxicology. In the early 80-ties Ekwall formulated so called basal cytotoxicity concept, which served as a basis for modern orientation in the field of cell toxicology: the use of tests on cells in culture for prediction of acute systemic toxicity in humans, instead of the use of tests on experimental animals. To be able to verify his theories, Ekwall organized and led the international toxicological project called MEIC: Multicentre Evaluation of In Vitro Cytotoxicity Programme (1989-1999). In this project, 50 selected chemicals were tested in 100 laboratories worldwide with more than 60 different in vitro tests (laboratories have chosen tests themselves). MEIC project was unique not only because its large scale, but, in particular, because, for the first time, the human peak blood concentrations after acute poisoning with chemicals were used as references, aiming to check predictability of the in vitro assays. The results of the MEIC project have clearly demonstrated a possibility to use in vitro tests for prediction of toxicity of chemicals in humans.  相似文献   

16.
Since the differentiation of embryonic stem cells mimics early development, these cells could potentially permit the detection of embryotoxicants which interfere with this process. Although reliable tests based on murine embryonic stem cells exist, no such methods are available for human embryonic stem (hES) cells. Nonetheless, to avoid the false classification of substances due to inter-species differences, human-relevant toxicity tests are needed. We therefore developed an assay based on three human cell types, representing different degrees of developmental maturation, namely, human foreskin fibroblasts, hES cell-derived progenitor cells, and pluripotent hES cells. A set of embryotoxicants for which existing in vivo data were available, namely, all-trans retinoic acid (ATRA), 13-cis retinoic acid (13CRA), valproic acid (VPA) and dimethyl sulphoxide (DMSO), were tested. 5-fluorouracil (5-FU) was used as a positive control, and saccharin as a negative control. Two methods were compared for the assessment of cell viability -- the determination of intracellular ATP content and of resazurin reduction. In addition, the protective capacity of basic fibroblast growth factor (bFGF) against retinoid-induced toxicity was investigated. This novel assay system reliably detected the embryotoxic potentials of the test substances, 5-FU, ATRA, 13-CRA (a substance that displays inter-species differences in its effects) and VPA. This was possible due to the apparent differences in the sensitivities of the human cell types used in the assay system. Thus, our results clearly indicate the advantages and relevance of using hES cells in in vitro developmental toxicity testing.  相似文献   

17.
The aim of the Evaluation-guided Development of new In Vitro Test Batteries (EDIT) multicentre programme is to establish and validate in vitro tests relevant to toxicokinetics and for organ-specific toxicity, to be incorporated into optimal test batteries for the estimation of human acute systemic toxicity. The scientific basis of EDIT is the good prediction of human acute toxicity obtained with three human cell line tests (R(2) = 0.77), in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. However, the results from the MEIC study indicated that at least two other types of in vitro test ought to be added to the existing test battery to improve the prediction of human acute systemic toxicity - to determine key kinetic events (such as biotransformation and passage through biological barriers), and to predict crucial organ-specific mechanisms not covered by the tests in the MEIC battery. The EDIT programme will be a case-by-case project, but the establishment and validation of new tests will be carried through by a common, step-wise procedure. The Scientific Committee of the EDIT programme defines the need for a specific set of toxicity or toxicokinetic data. Laboratories are then invited to perform the defined tests in order to provide the "missing" data for the EDIT reference chemicals. The results obtained will be evaluated against the MEMO (the MEIC Monograph programme) database, i.e. against human acute systemic lethal and toxicity data. The aim of the round-table discussions at the 19th Scandinavian Society for Cell Toxicology (SSCT) workshop, held in Ringsted, Denmark on 6-9 September 2001, was to identify which tests are the most important for inclusion in the MEIC battery, i.e. which types of tests the EDIT programme should focus on. It was proposed that it is important to include in vitro methods for various kinetic events, such as biotransformation, absorption in the gut, passage across the blood-brain barrier, distribution volumes, protein binding, and renal clearance/accumulation. Models for target organ toxicity were also discussed. Because several of the outlier chemicals (paracetamol, digoxin, malathion, nicotine, paraquat, atropine and potassium cyanide) in the MEIC in vivo-in vitro evaluation have a neurotoxic potential, it was proposed that the development within the EDIT target organ programme should initially be focused on the nervous system.  相似文献   

18.
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号