首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments performed in batch fermentation under phosphate-limited growth conditions showed that the citric acid yield was inversely related to the excess nitrogen concentration in the medium. Results from chemostat culture confirmed a negative relationship between the citric acid yield and both the specific growth rate and the nitrogen consumption rate. This is evidence for nitrogen catabolite repression. A fed-batch fermentation performed under dual phosphate/nitrogen limitation produced results very similar to those from a culture limited by nitrogen alone. There is no advantage in maintaining an excess of phosphate during citric acid production and the process will therefore be more economic when operated under dual limitation conditions.  相似文献   

2.
Efficient porcine interferon-α (pIFN-α) expression in high density recombinant Pichia pastoris cultivation was achieved in a 5 l bench-scaled bioreactor. The results indicated that a high and stable oxygen uptake rate (OUR) during induction phase was closely related with pIFN-α production efficiency. The multi-variables clustering and analysis results showed that the achievement of a high and stable OUR relied on a higher glycerol consumption rate during fed-batch culture phase and a moderate methanol level (around 10 g/l) during induction phase. In the high and stable OUR environments (200–300 mmol/l/h), the highest pIFN-α antiviral activity could reach a level of 6.7 × 106 IU/ml, which was more than 10–300-folds higher than those obtained at lower OUR (80–200 mmol/l/h) using the same bioreactor and those obtained in shaking flasks. Clustering and analysis of the specific growth and glycerol consumption rates data during culture phase could detect the ill fermentation state at early stage, potentially provided a simple and effective fault alarming/diagnosis method for the achievement of stable pIFN-α production.  相似文献   

3.
Modelling Xanthomonas campestris batch fermentations in a bubble column   总被引:1,自引:0,他引:1  
Rate and yield expressions relating to biomass and xanthan formation and to nitrogen, glucose, and oxygen consumption were established for Xanthomonas campestris batch fermentations in a bubble column. Microbial growth was described by the logistic rate equation, characterized by a maximum specific growth rate mu(M) = 0.5 h(-1) and a maximum attainable cell concentration provided by nitrogenous compounds. With regard to carbon metabolism, the decrease with time in experimental yields and in the experimental specific rates of xanthan production and glucose assimilation demonstrated the inadequacy of the Luedeking-Piret model. These decreases were connected to the simultaneous drop in dissolved-oxygen tension observed during xanthan synthesis. The knowledge of metabolic pathways and energetic balance were used to establish the relationships between substrate utilization, ATP generation, and xanthan production. The model was structured by assuming the oxygen limitation of both the respiration rate and the efficiency of the oxidative phosphorylation mechanism (P/O ratio). Consequently, the specific rates and yield expressions became dependent on the dissolved-oxygen tension, i.e., of the volumetric oxygen transfer in the fermentor.  相似文献   

4.
N. BAMAS-JACQUES, S. LORENZON, P. LACROIX, C. DE SWETSCHIN and J. CROUZET.1999. Streptomyces pristinaespiralis synthesizes pristinamycin, a member of the streptogramin antibiotic family which consists of a mixture of two types of chemically unrelated compounds named pristinamycins I and pristinamycins II. In order to estimate the size of the Strep. pristinaespiralis chromosome and to elucidate the organization of the pristinamycin biosynthetic and resistance genes already identified, it was decided to use the pulsed-field gel electrophoresis technique. Results indicate that the Strep. pristinaespiralis chromosome is linear and about 7580 kb, as previously shown for several other Streptomyces species. By hybridization, it could be shown that the biosynthetic and resistance genes for pristinamycins I and pristinamycins II, except for the multidrug resistance gene ptr , are interspersed and seem to be organized as a single large cluster, covering less than 200 kb corresponding to 2·6% of the total size of the chromosome. The consequences and significance of such a genetic organization are discussed.  相似文献   

5.
On-line characterization of a hybridoma cell culture process   总被引:2,自引:0,他引:2  
The on-line determination of the physiological state of a cell culture process requires reliable on-line measurements of various parameters and calculations of specific rates from these measurements. The cell concentration of a hybridoma culture was estimated on-line by measuring optical density (OD) with a laser turbidity probe. The oxygen uptake rate (OUR) was determined by monitoring dynamically dissolved oxygen concentration profiles and closing oxygen balances in the culture. The base addition for neutralizing lactate produced by cells was also monitored on-line via a balance. Using OD and OUR measurements, the specific growth and specific oxygen consumption rates were determined on-line. By combining predetermined stoichiometric relationships among oxygen and glucose consumption and lactate production, the specific glucose consumption and lactate production rates were also calculated on-line. Using these on-line measurements and calculations, the hybridoma culture process was characterized on-line by identifying the physiological states. They will also facilitate the implementation of nutrient feeding strategies for fed-batch and perfusion cultures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a changing biomass composition, but much more important was the ability of uncoupling between anabolic biomass formation and catabolic energy substrate consumption. When ammonium started to limit the amount of biomass formed and hence the anabolic flow of glucose, this was totally or at least partly compensated for by an increased catabolic glucose consumption. The primary response when glucose was present in excess of the minimum requirements for biomass production was an increased rate of respiration. The calculated specific oxygen consumption rate, at D = 0.07 h-1, was more than doubled when an additional nitrogen limitation was imposed on the cells compared with that during single glucose limitation. However, the maximum respiratory capacity decreased with decreasing nitrogen concentration. The saturation level of the specific oxygen consumption rate decreased from 5.5 to 6.0 mmol/g/h under single glucose limitation to about 4.0 mmol/g/h at the lowest nitrogen concentration tested. The combined result of this was that the critical dilution rate, i.e., onset of fermentation, was as low as 0.10 h-1 during growth in a medium with a low nitrogen concentration compared with 0.20 h-1 obtained under single glucose limitation.  相似文献   

8.
Metabolic flux analysis was applied to Streptomyces coelicolor continuous culture data obtained under nitrogen, phosphate, sulfate, and potassium limitations. The metabolic reaction network involved more than 200 reactions describing the major pathways as well as the secondary metabolism for the production of actinorhodin and excretion of certain metabolites. Linear programming was used for the optimization of specific growth rates and energy requirements. Two types of specific growth rates, stoichiometric and theoretical, were defined, maximized, and compared in order to investigate the microbial potential. Potassium limitation led to the largest and nitrogen limitation to the smallest difference between the stoichiometric and theoretical specific growth rates. Although the value of the maximum theoretical specific growth rate was close to that of the experimental specific growth rate with potassium limitation, this difference was the largest in the case of nitrogen limitation. Energy requirements during different nutrient limitations were also investigated. The model indicated that although the highest actinorhodin production rate was with nitrogen limitation, this was accompanied with the undesired excretion of certain metabolites.  相似文献   

9.
The yield from glucose of ammonia-grown carbon-limited continuous cultures of Penicillium stipitatum was ca. 20% higher than that of nitrate-grown cultures at all growth rates examined. However, the yield from oxygen was similar during growth on both nitrogen sources. Under phosphate limitation the specific rate of gluconic acid and stipitatic acid production increased with growth rate, but the former product accounted for virtually 100% of the excreted carbon. Stipitatic acid was not produced under nitrogen limitation, and glucose supplied to the culture in excess of that required for growth was virtually quantatively converted into gluconic acid. Productivities of 11.4 g gluconic acid/L/h were stably maintained in continuous culture. Under conditions of glucose excess the enzyme glucose oxidase was excreted into the culture. The specific activity of this extracellular enzyme increased when the input glucose concentration to the culture was progressively increased. The excretion of a protein under nitrogen limitation suggests that this enzyme plays an important role under these conditions. Indeed, it was demonstrated that nitrogen-limited cultures did not overmetabolize gluconate at either pH 6.5 or 3.5, although up to 29 g/L gluconate was present in the culture. The Y(gluconate) and YO(2) of C- and N-limited gluconate-grown cultures were similar indicating that the rapid conversion of glucose to gluconate probably affords a means of regulating carbon flow in this organism. Nitrogen-limited cultures of P. stipitatum overmetabolized glucose to a much greater extent than acetate, fructose, or gluconate.  相似文献   

10.
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)?1 h?1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW?1 h?1 allowed maximization of the ethanol yield over xylose (0.327 g g?1), the average productivity (2.2 g l?1 h?1) and the ethanol final titer (48.81 g l?1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g?1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW?1 h?1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l?1 h?1 and 54.19 g l?1 when the specific OUR was the highest.  相似文献   

11.
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-epsilon-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- epsilon-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-epsilon-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates (qO2) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.  相似文献   

12.
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.  相似文献   

13.
Vancomycin production in batch and continuous culture   总被引:5,自引:0,他引:5  
Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Y(p/x)) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h(-1)), specific vancomycin production rate (q(vancomycin)) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, q(vancomycin) was a function of specific growth rate; the maximum value was observed at D = 0.087 h(-1) (52% of the maximum specific growth rate). Under phosphate limited growth conditions, q(vancomycin) was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
AIMS: The effect of various nitrogen sources and nutritional starvation was examined on the production of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. METHODS AND RESULTS: Cell growth and proteolytic activity were measured in cells grown with different nitrogen sources. Proteolytic activity was produced in complex and easily metabolized nitrogen sources such as yeast extract, casein and casamino acids; meanwhile, ammonium repressed enzyme production. The time course and amount of protease accumulated showed an inverse correlation with growth rate and nutrient concentration. Starvation did not induce extracellular protease production. CONCLUSION: The accumulation of Nab. magadii extracellular protease is stimulated by nutrient limitation and slow growth rate indicating that it is probably induced in response to a deficit in the energetic status of the cells. Nutritional starvation did not induce protease accumulation suggesting that de novo synthesis of this protease and/or factor/s necessary for its activation are required. This enzyme may be regulated by nitrogen catabolite repression and it does not require protein substrates for induction. SIGNIFICANCE AND IMPACT OF THE STUDY: These results contribute to the basic knowledge on protease regulation in haloalkaliphilic archaea and will help to optimize the production of this extremozyme for biotechnological applications such as protease-catalysed peptide synthesis.  相似文献   

15.
Respiration and photosynthesis are two important processes in microalgal growth that occur simultaneously in the light. To know the rates of both processes, at least one of them has to be measured. To be able to measure the rate of light respiration of Chlorella sorokiniana, the measurement of oxygen uptake must be fast, preferably in the order of minutes. We measured the immediate post-illumination respiratory O2 uptake rate (OUR) in situ, using fiber-optic oxygen microsensors, and a small and simple extension of the cultivation system. This method enables rapid and frequent measurements without disturbing the cultivation and growth of the microalgae. Two batch experiments were performed with C. sorokiniana in a short light-path photobioreactor, and the OUR was measured at different time points. The net oxygen production rate (net OPR) was measured online. Adding the OUR and net OPR gives the gross oxygen production rate (gross OPR), which is a measure for the oxygen evolution by photosynthesis. The gross OPR was 35–40% higher than the net OPR for both experiments. The respiration rate is known to be related to the growth rate, and it is suggested that faster algal growth leads to a higher energy (ATP) requirement, and as such, respiratory activity increases. This hypothesis is supported by our results, as the specific OUR is highest in the beginning of the batch culture when the specific growth rate is highest. In addition, the specific OUR decreases toward the end of the experiments until it reaches a stable value of around 0.3 mmol O2 h−1 g−1. This value for the specific OUR is equal to the maintenance requirement of C. sorokiniana as determined in an independent study of (Zijffers et al. 2010 (in press)). This suggests that respiration could fulfill the maintenance requirements of the microalgal cells.  相似文献   

16.
Fermentation of xylose by Clostridium thermosaccharolyticum was studied in batch and continuous culture in which the limiting nutrient was either xylose, phosphate, or ammonia. Transient results obtained in continuous cultures with batch grown inoculum and progressively higher feed substrate concentrations exhibited ethanol selectivities (moles ethanol/moles other products) in excess of 11. The hypothesis that this high ethanol selectivity was a general response to mineral nutrient limitation was tested but could not be supported. Growth and substrate consumption were related by the equation q(s)(1 - Y(x) (c))G(ATP) = (mu/Y(ATP) (max)) + m, with q(s) the specific rate of xylose consumption (moles xylose/hour . g cells), Y(x) (c) the carbon based cell yield (g cell carbon/g substrate carbon), G(ATP) the ATP gain (moles ATP produces/mol substrate catabolized), mu the specific growth rate (1/h), Y(ATP) (max) the ATP-based cell yield (g cells/mol ATP), and m the maintenance coefficient (moles ATP/hour . g cells). Y(ATP) (max) was found to be 11.6 g cells/mol ATP, and m 9.3 mol ATP/hour . g cells for growth on defined medium. Different responses to nutrient limitation were observed depending on the mode of cultivation. Batch and immobilized cell continuous cultures decreased G(ATP) by initiating production of the secondary metabolites, propanediol, and in some cases, D-lactate; in addition, batch cultures increased the fractional allocation of ATP to maintenance and/or wastage. Nitrogen-limited continuous free-cell cultures maintained a constant cell yield, whereas phosphate-limited continuous free-cell cultures did not. In the case of phosphate limitation, the decreased ATP demand associated with the lowered cell yield was accompanied by an increased rate of ATP consumption for maintenance and/or wastage. Neither nitrogen or phosphorus-limited continuous free-cell cultures exhibited an altered G(ATP) in response to mineral nutrient limitation, and neither produced secondary metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Abstract

Most of the reported bioprocesses carried out by the methylotrophic yeast Pichia pastoris have been performed at laboratory scale using high power inputs and pure oxygen, such conditions are not feasible for industrial large-scale processes. In this study, volumetric mass transfer (kLa) and volumetric gassed power input (Pg/V) were evaluated within values attainable in large-scale production as scale-up criteria for recombinant dextranase production by MutS P. pastoris strain. Cultures were oxygen limited when the volumetric gassed power supply was limited to 2?kW m?3. Specific growth rate, and then dextranase production, increased as kLa and Pg/V did. Meanwhile, specific production and methanol consumption rates were constant, due to the limited methanol condition also achieved at 2?L bioprocesses. The specific dextranase production rate was two times higher than the values previously reported for a Mut+ strain. After a scale-up process, at constant kLa, the specific growth rate was kept at 30?L bioprocess, whereas dextranase production decreased, due to the effect of methanol accumulation. Results obtained at 30?L bioprocesses suggest that even under oxygen-limited conditions, methanol saturated conditions are not adequate to express dextranase with the promoter alcohol oxidase. Bioprocesses developed within feasible and scalable operational conditions are of high interest for the commercial production of recombinant proteins from Pichia pastoris.  相似文献   

18.
Growth and lactose metabolism of a Leuconostoc mesenteroides strain were studied in batch cultures at pH 6.5 and 30° C in 101 modified MRS medium sparged with different gases: nitrogen, air and pure oxygen. In all cases, growth occurred, but in aerobiosis there was oxygen consumption, leading to an improvement of growth yield Y x/s and specific growth rate compared to anaerobiosis. Whatever the extent of aerobic growth, oxygen uptake and biomass production increased with the oxygen transfer rate so that the oxygen growth yield, Y x/o2, remained at a constant value of 11 g dry weight of biomass/mol oxygen consumed. Pure oxygen had a positive effect on Leuconostoc growth. Oxygen transfer was limiting under air, but pure oxygen provided bacteria with sufficient dissolved oxygen and leuconostocs were able to consume large amounts of oxygen. Acetate production increased progressively with oxygen consumption so that the total molar concentration of acetate plus ethanol remained constant. Maximal Y x/s was obtained with a 120 l/h flow rate of pure oxygen: the switch from ethanol to acetate was almost complete. In this case, a 46.8 g/mol Y x/s and a 0.69 h–1 maximal growth rate could be reached.  相似文献   

19.
The oxygen uptake rate (OUR) was studied in a solid state fermentation process of dried citrus peel with the strain Aspergillus niger QH-2 in order to obtain the growth estimation of the microorganism in the system. The relationship between OUR, the maintenance coefficient (m) and the yield for oxygen consumption YO2 allows the estimation of the biomass rate if we consider that both parameters are not constants in some periods of the process. It was estimated that in the first 24th the strain has an specific growth rate of 0.174 h?1 with values for YO2 and m in the order of 2.84 g-cell/g-oxygen and 0.006 g-oxygen/g-cell ·h respectively.  相似文献   

20.
Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号