首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant species and genotypes within the same species may differ in phosphorus efficiency. The objective of this research was to study phosphorus efficiency of cabbage (Brassica oleraceae L.), carrot (Daucus carota L.), and potato (Solanum tuberosum L.) and to quantify the contribution of morphological root characteristics to P uptake of the plant species. An experiment was conducted in a glasshouse with six P levels: 0, 12, 27, 73, 124 and 234 mg P kg–1 soil, and with six replications. Cabbage attained 80% of its maximum yield already at the level of no P supply, whereas carrot and potato reached only 4 and 16% of their highest yields respectively at this level of P supply. This indicated that cabbage was P-efficient compared to carrot and potato. Root/shoot ratio (cm root g–1 shoot d. m.) increased in the order of cabbage < carrot < potato, and was enhanced at lower P levels. Root hair length was not affected by P level, and averaged 0.22, 0.03 and 0.18 mm for cabbage, carrot, and potato, respectively. Predicting P uptake by a mechanistic simulation model revealed that root hairs contributed about 50% to the total P uptake of cabbage and potato, but only 0.3% to that of carrot. The relationship between the observed P uptake and the predicted P uptake of the plants revealed that model parameters explained nearly 4/5th of the total P uptake of carrot and potato, but only 2/5th of that of cabbage. This showed that the P uptake of cabbage was strongly under-predicted, whereas that of carrot and potato was predicted well. Therefore, it was hypothesised that cabbage may have the ability to mobilise and take up soil P additionally by other root mechanisms such as exudation of organic acids.  相似文献   

2.
Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.  相似文献   

3.
Summary Root hairs have been shown to enhance P uptake by plants growing in low P soil. Little is known of the factors controlling root hair growth. The objective of this study was to investigate the influence of soil moisture and P level on root hair growth of corn (Zea mays L.). The effect of volumetric soil moistures of 22% (M0), 27% (M1), and 32% (M2) and soil (Raub silt loam, Aquic Argiudoll) P levels of, 0.81 (P0), 12.1 (P1), 21.6 (P2), 48.7 (P3), and 203.3 (P4) mol P L–1 initially in the soil solution, on shoot and root growth, P uptake, and root hair growth of corn was studied in a series of pot experiments in a controlled climate chamber. Root hair growth was affected more by soil moisture than soil P. The percentage of total root length with root hairs and the density and length of root hairs on the root sections having root hairs all increased as soil moisture was reduced from M2 to M0. No relationship was found between root hair length and soil P. Density of root hairs, however, was found to decrease with an increase in soil P. No correlation was found between root hair growth parameters and plant P content, further suggesting P plays a secondary role to moisture in regulating root hair growth in soils. The increase in root hair growth appears to be a response by the plant to stress as yield and P uptake by corn grown at M0 were only 0.47 to 0.82, and 0.34 to 0.74, respectively, of that measured at M1 across the five soil P levels. The increase in root hair growth at M0, which represents an increase of 2.76 to 4.03 in root surface area, could offset, in part, the reduced rate of root growth, which was the primary reason for reduced P uptake under limited soil moisture conditions.Journal Paper No. 10,066 Purdue Univ. Agric. Exp. Stn., W. Lafayette, IN 47907. Contribution from the Dep. of Agron. This paper was supported in part by a grant from the Tennessee Valley Authority.  相似文献   

4.
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed.  相似文献   

5.
One rape (Brassica napus cv. Wesroona) plant and four cotton (Gossypium hirsutum cv. Sicot 3) plants were grown in plastic cells containing soil labelled with 407 kBq of33P g−1 soil. After 5–8 days of growth, the33P depletion zones of all plants were autoradiographed and33P uptake by plants was measured. The autoradiographs were scanned with a microdensitometer and the optical densities at several places within the33P depletion zones of roots were obtained. The volume of soil explored by root hairs was estimated from measurements of root diameters and lengths of roots and root hairs. About half of the total33P depleted by cotion roots came from outside the root hair cylinder whereas most of33P taken up by rape was from within the root hair cylinder. Plants grown in a macrostructured soil may have roots growing in voids, within aggregates or on the surfaces of aggregates. The results of this study demonstrate that root hairs have a strong influence on the accessibility of phosphorus to roots in such a soil, and thus on the phosphorus nutrition of plants.  相似文献   

6.
Gahoonia  Tara S.  Nielsen  Niels E.  Lyshede  Ole B. 《Plant and Soil》1999,211(2):269-281
Low phosphorus (P) availability in soils and diminishing P reserves emphasize the need to create plants that are more efficient P users. Knowledge of P efficient germplasm among the existing cereal varieties may serve as the basis for improving soil P use by selection and breeding. We had identified some cereal cultivars (winter wheat: Kosack and Kraka; winter barley: Hamu and Angora; spring barley: Canut, Alexis, Salka, Zita;) which differed (p<0.05) in P depletion from thin slices (0.2 mm) of the rhizosphere soil under controlled conditions. In the present study, the same cultivars were studied under field conditions at three levels of P supply (no-P, 10 and 20 kg P ha-1) and the differences in P uptake as found in the previous work were confirmed. Under both conditions, the variation between the cultivars was greatest in soil without P fertilizers (no-P) for about 30 years. The variation in P uptake with most cultivars disappeared when 10 kg P ha-1 was applied. Root development did not differ between the cultivars much, but there was wide, consistent variation in their root hairs, regardless of growth media (solution, soil column and field). Increase in soil P level reduced the length of root hairs. The variation in root hairs between the cultivars was largest in no-P soil. When 10 kg P ha-1 was applied, the root hair lengths did not differ between the cultivars. Barley cultivars with longer root hairs depleted more P from the rhizosphere soil and also absorbed more P in the field. The relationship between root hairs and phosphorus uptake of the wheat cultivars was less clear. The wide variation in P uptake among the barley cultivars in the field and its relationship to the root hair development confirms that root hair length may be a suitable plant characteristic to use as criterion for selecting barley cultivars for P efficiency, especially in low-P soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

8.
Background and AimsPrevious laboratory studies have suggested selection for root hair traits in future crop breeding to improve resource use efficiency and stress tolerance. However, data on the interplay between root hairs and open-field systems, under contrasting soils and climate conditions, are limited. As such, this study aims to experimentally elucidate some of the impacts that root hairs have on plant performance on a field scale.MethodsA field experiment was set up in Scotland for two consecutive years, under contrasting climate conditions and different soil textures (i.e. clay loam vs. sandy loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length and density were used in the study. Root hair length, density and rhizosheath weight were measured at several growth stages, as well as shoot biomass, plant water status, shoot phosphorus (P) accumulation and grain yield.Key ResultsMeasurements of root hair density, length and its correlation with rhizosheath weight highlighted trait robustness in the field under variable environmental conditions, although significant variations were found between soil textures as the growing season progressed. Root hairs did not confer a notable advantage to barley under optimal conditions, but under soil water deficit root hairs enhanced plant water status and stress tolerance resulting in a less negative leaf water potential and lower leaf abscisic acid concentration, while promoting shoot P accumulation. Furthermore, the presence of root hairs did not decrease yield under optimal conditions, while root hairs enhanced yield stability under drought.ConclusionsSelecting for beneficial root hair traits can enhance yield stability without diminishing yield potential, overcoming the breeder’s dilemma of trying to simultaneously enhance both productivity and resilience. Therefore, the maintenance or enhancement of root hairs can represent a key trait for breeding the next generation of crops for improved drought tolerance in relation to climate change.  相似文献   

9.
The lengths of roots and root hairs and the extent of root-induced processes affect phosphorus (P) uptake efficiency by plants. To assess the influence of variation in the lengths of roots and root hairs and rhizosphere processes on the efficiency of soil phosphorus (P) uptake, a pot experiment with a low-P soil and eight selected genotypes of cowpea (Vigna unguiculata (L) WALP) was conducted. Root length, root diameter and root hair length were measured to estimate the soil volume exploited by roots and root hairs. The total soil P was considered as a pool of Olsen-P, extractable with 0.5 M NaHCO3 at pH 8.5, and a pool of non-Olsen-P. Model calculations were made to estimate P uptake originated from Olsen-P in the root hair zone and the Olsen-P moving by diffusion into the root hair cylinder and non-Olsen-P uptake. The mean uptake rate of P and the mean rate of non-Olsen-P depletion were also estimated. The genotypes differed significantly in lengths of roots and root hairs, and in P uptake, P uptake rates and growth. From 6 to 85% of total P uptake in the soil volume exploited by roots and root hairs was absorbed from the pool of non-Olsen-P. This indicates a considerable activity of root-induced rhizosphere processes. Hence the large differences show that traits for more P uptake-efficient plants exist in the tested cowpea genotypes. This opens the possibility to breed for more P uptake-efficient varieties as a way to bring more sparingly soluble soil P into cycling in crop production and obtain capitalisation of soil P reserves.  相似文献   

10.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

11.
The selection and breeding of crop genotypes with root traits that improve soil resource extraction is a promising avenue to improved nutrient and water use efficiency in low-input farming systems. Such genotypes may accelerate nutrient extraction (“nutrient mining”), but may also reduce nutrient loss via soil erosion by producing greater shoot biomass and by direct effects of root traits on aggregate formation and water infiltration. Little is known about the effects of root architecture on phosphorus (P) runoff and soil erosion, and the relative importance of root and shoot traits on runoff P loss has not been determined. Four genotypes of common bean (Phaseolus vulgaris L.) and two genotypes of soybean (Glycine max) selected for contrasting root architecture were grown in a low P soil (Aquic Fragiudult, <20 mg kg?1 Mehlich-3 P, 3% slope) and subjected to rainfall-runoff experiments with and without shoot removal. Plots with intact shoots had significantly lower runoff volumes (1.3–7.6 mm) and total P loads in runoff (0.005–0.32 kg ha?1) than plots with shoots removed (7.0–16.8 mm; 0.025–1.95 kg ha?1). Dissolved reactive P leached from plant material did not contribute significantly to P loss in runoff. Total root length acquired from soil cores differed significantly among genotypes. Root length densities in the upper 15 cm of soil mid-way between rows were less than 4.0 cm cm?3 and variation in root length density was not correlated with runoff or P loss. Root length density also did not affect rainfall infiltration or surface runoff volume. We conclude that for annual dicotyledonous crops such as bean and soybean with relatively low root length densities, root traits have little direct effect on soil erosion.  相似文献   

12.
Summary Root parameters of three corn (Zea mays L.) genotypes influencing P and K uptake were investigated in solution culture and field experiments. The data for these parameters were used to simulate P and K uptake by plants grown in the field using the Claassen-Barber model5. Root characteristics for ion influx, maximum rate of influx,Imax; Michaelis-Menten constant,Km; and minimum concentration of solution below which no further net influx occurs,Cmin were determined in solution culture. These kinetic parameters varied 2 to 3 fold among genotypes. Variations among genotypes were different for K than for P.Three corn genotypes were grown in the field and harvested 47, 54 and 68 days after emergence. Yield and root surface per plant increased about 3 fold during this time. At 47 days, 2/3 of the total root surface was in the top soil whereas 3 weeks later, it was less than 50%. Genotypes differed in distribution of roots between the topsoil and subsoil as well as in root surface per unit of shoot.K uptake predicted by the Claassen-Barber model was 2 to 3 times the observed. The overprediction could be related to high root density (length of root per unit soil volume) which indicated that competition between roots occurred that was not considered in the simulation model. The predicted P uptake (y) was correlated (r=0.91) to observed uptake (x) byy=0.98+0.67x, indicating underprediction of P uptake. The presence of root hairs may have been the cause of the underprediction. The calculated contribution of the subsoil to the observed uptake was 10% for K and 1% in the case of P. It was concluded that the plant parameters used to simulate nutrient uptake were rated accurately when allowance was made for root competition and presence of root hairs.Journal Paper No. 7608. Purdue University, Agric. Exp. Station, West Lafayette, IN 47907. Contribution from the Department of Agronomy. This research was supported in part by the Tennessee Valley Authority and the Deutsche Forschungsgemeinschaft.  相似文献   

13.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

14.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

15.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

16.
Changes in growth and phosphorus content in plants and seeds of fenugreek with increasing cadmium concentration was evaluated. Root length and shoot length ranged from 11.63 to 27.72 and from 9.70 to 54.78 cm, respectively. With the increasing Cd2+ concentration there was a significant decrease in root and shoot length, and fresh mass. Various phosphorus fractions of shoot decreased with increasing Cd2+ concentration except lipid P and nucleic acid P which increased at 65 and 95 d after sowing and protein P only increased at vegetative stage. In seeds (60 d after flowering) lipid P increased except at 2.5 μg(Cd2+) g?1 (soil) while protein P decreased.  相似文献   

17.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

18.
Root hairs substantially increase the surface area of plant roots with positive effects for phosphorus (P) uptake, but the ability of peanuts to form root hairs has been questioned. The aim was to examine hair development on roots and gynophores of a variety of peanut genotypes and to relate genotypic differences in hair formation to differences in P uptake. Five out of eighteen genotypes completely lacked hairs on both organs whereas others consistently developed hairs on roots and gynophores, although with considerable variation in hair density. The ability to form root hairs as well as root hair density concurred with the presence and density of hairs on gynophores, suggesting a possible connection between both developmental processes. The contribution of root hairs to P uptake was studied in three genotypes differing in hair density. The final amount of P taken up by roots did not differ between genotypes but two distinct P uptake strategies could be identified. The genotype lacking root hairs maintained P uptake due to the development of a large root system whereas densely covered roots of genotype 'Wasedairyu' were three times as efficient in extracting P from a P-deficient soil. Furthermore P uptake through gynophores contributed about 20% to the total P uptake of Wasedairyu but only insignificant amounts to other genotypes. The ability to form hairs on roots and gynophores can therefore be seen as an adaptation to low P availability and if combined with a large root system, could substantially increase the tolerance of peanuts to P deficiency.  相似文献   

19.
Phosphorus efficiency of plants   总被引:1,自引:0,他引:1  
Föhse et al. (1988) have shown that P influx per unit root length in seven plant species growing in a low-P soil varied from 0.6×10-14 to 4.8×10-14 mol cm-1s-1. The objective of this work was to investigate the reasons for these differences. No correlation was found between P influx and root radius, root hairs, cation-anion balance and Ca uptake. However, when root hairs were included in mathematical model calculations, the differences of P influx could be accounted for. These calculations have shown that in soils low in available P, contribution to P uptake by root hairs was up to 90% of total uptake. The large contribution of root hairs to P uptake was partly due to their surface area, which was similar to that of the root cylinder. However, the main reason for the high P uptake efficiency of root hairs was their small radius (approx. 5×10-4 cm) and their perpendicular growth into the soil from the root axis. Because of the small radius compared to root axes, P concentration at root hair surfaces decreased at a slower pace and therefore P influx remained higher. Under these conditions higher Imax (maximum influx) or smaller Km values (Michaelis constant) increased P influx. The main reasons for differences found in P influx among species were the size of Imax and the number and length of root hairs. In a soil low in available P, plant species having more root hairs were able to satisfy a higher proportion of their P demand required for maximum growth.  相似文献   

20.
Zinc (Zn) deficiency reduces crop yields globally. This study investigated the importance of root morphological traits, especially root hairs, in plant growth and Zn uptake. Wild-type barley (Hordeum vulgare) Pallas and its root-hairless mutant brb were grown in soil and solution culture at different levels of Zn supply for 16 d. Root morphological traits (root length, diameter, and surface area) were measured using the WinRHIZOPro Image Analysis system. In soil culture, Pallas had greater shoot dry matter, shoot Zn concentration, shoot Zn content, and Zn uptake per cm(2) root surface area than brb, primarily under zinc deficiency. Both Pallas and brb developed longer roots under Zn deficiency. Development of root hairs was not affected by plant Zn status. In solution culture, there were no significant genotypic differences in any of the parameters measured, indicating that mutation in brb does not affect growth and Zn uptake. However, both Pallas and brb developed longer and thinner roots, and root hair growth was less than in soil culture, and was not affected by plant Zn status. The better growth and greater Zn uptake of Pallas compared with brb in Zn-deficient soil can be attributed primarily to greater root surface area due to root hairs in Pallas rather than other root morphological differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号