首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saji H  Iizuka R  Yoshida T  Abe T  Kidokoro S  Ishii N  Yohda M 《Proteins》2008,71(2):771-782
Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the alpha-crystallin domain. Generally, sHsps exist as oligomers of 9-40 subunits, and the oligomers undergo reversible temperature-dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C-terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C-terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C-terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of beta-sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C-terminal region are responsible not only for assembly of the oligomer but also for the maintenance of beta-sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp.  相似文献   

2.
The diverse family of alpha-crystallin-type small heat shock proteins (alpha-Hsps or sHsps) is characterised by a central, moderately conserved alpha-crystallin domain. Oligomerisation followed by dissociation of subparticles is thought to be a prerequisite for chaperone function. We demonstrate that HspH, a bacterial alpha-Hsp from the soybean-symbiont Bradyrhizobium japonicum, assembles into dynamic complexes freely exchanging subunits with homologous and heterologous complexes. The importance of the alpha-crystallin domain for oligomerisation and chaperone activity was tested by site-directed mutagenesis of 12 different residues. In contrast to mammalian alpha-Hsps, the majority of these mutations elicited severe structural and functional defects in HspH. The individual exchange of five amino acid residues throughout the alpha-crystallin domain was found to compromise oligomerisation to various degrees. Assembly defects resulting in complexes of reduced size correlated with greatly decreased or abolished chaperone activity, reinforcing that complete oligomerisation is required for functionality. Mutation of a highly conserved glycine (G114) at the C-terminal end of the alpha-crystallin domain specifically impaired chaperone activity without interfering with oligomerisation properties, indicating that this residue is critical for substrate interaction. The structural and functional importance of this and other residues is discussed in the context of a modeled three-dimensional structure of HspH.  相似文献   

3.
Small heat shock proteins are a superfamily of molecular chaperones that suppress protein aggregation and provide protection from cell stress. A key issue for understanding their action is to define the interactions of subunit domains in these oligomeric assemblies. Cryo-electron microscopy of yeast Hsp26 reveals two distinct forms, each comprising 24 subunits arranged in a porous shell with tetrahedral symmetry. The subunits form elongated, asymmetric dimers that assemble via trimeric contacts. Modifications of both termini cause rearrangements that yield a further four assemblies. Each subunit contains an N-terminal region, a globular middle domain, the alpha-crystallin domain, and a C-terminal tail. Twelve of the C termini form 3-fold assembly contacts which are inserted into the interior of the shell, while the other 12 C termini form contacts on the surface. Hinge points between the domains allow a variety of assembly contacts, providing the flexibility required for formation of supercomplexes with non-native proteins.  相似文献   

4.
The cytoskeleton has a unique property such that changes of conformation result in polymerization into a filamentous form. alphaB-Crystallin, a small heat shock protein (sHsp), has chaperone activities for various substrates, including proteins constituting the cytoskeleton, such as actin; intermediate filament; and tubulin. However, it is not clear whether the "alpha-crystallin domain" common to sHsps also has chaperone activity for the protein cytoskeleton. To investigate the possibility that the C-terminal alpha-crystallin domain of alpha-crystallin has the aggregation-preventing ability for tubulin, we constructed an N-terminal domain deletion mutant of alphaB-crystallin. We characterized its structural properties and chaperone activities. Far-ultraviolet (UV) circular dichroism measurements showed that secondary structure in the alpha-crystallin domain of the deletion mutant is maintained. Ultracentrifuge analysis of molecular masses indicated that the deletion mutant formed smaller oligomers than did the full-length protein. Chaperone activity assays demonstrated that the N-terminal domain deletion mutant suppressed heat-induced aggregation of tubulin well. Comparison of chaperone activities for 2 other substrates (citrate synthase and alcohol dehydrogenase) showed that it was less effective in the suppression of their aggregation. These results show that alphaB-crystallin recognizes a variety of substrates and especially that alpha-crystallin domain binds free cytoskeletal proteins. We suggest that this feature would be advantageous in its functional role of holding or folding multiple proteins denatured simultaneously under stress conditions.  相似文献   

5.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

6.
Ghosh JG  Estrada MR  Clark JI 《Biochemistry》2005,44(45):14854-14869
Protein pin arrays identified seven interactive sequences for chaperone activity in human alphaB crystallin using natural lens proteins, beta(H) crystallin and gammaD crystallin, and in vitro chaperone target proteins, alcohol dehydrogenase and citrate synthase. The N-terminal domain contained two interactive sequences, (9)WIRRPFFPFHSP(20) and (43)SLSPFYLRPPSFLRAP(58). The alpha crystallin core domain contained four interactive sequences, (75)FSVNLDVK(82) (beta3), (113)FISREFHR(120), (131)LTITSSLS(138) (beta8), and (141)GVLTVNGP(148) (beta9). The C-terminal domain contained one interactive sequence, (157)RTIPITRE(164), that included the highly conserved I-X-I/V motif. Two interactive sequences, (73)DRFSVNLDVKHFS(85) and (131)LTITSSLSDGV(141), belonging to the alpha crystallin core domain were synthesized as peptides and assayed for chaperone activity in vitro. Both synthesized peptides inhibited the thermal aggregation of beta(H) crystallin, alcohol dehydrogenase, and citrate synthase in vitro. Five of the seven chaperone sequences identified by the pin arrays overlapped with sequences identified previously as sequences for subunit-subunit interactions in human alphaB crystallin. The results suggested that interactive sequences in human alphaB crystallin have dual roles in subunit-subunit assembly and chaperone activity.  相似文献   

7.
The small heat shock proteins Hsp12.2 and alphaB-crystallin differ in that the former occurs as tetramers, without chaperonelike activity, whereas the latter forms multimers and is a good chaperone. To investigate whether the lack of chaperone activity of Hsp12.2 is primarily due to its tetrameric structure or rather to intrinsic sequence features, we engineered chimeric proteins by swapping the N-terminal, C-terminal, and tail regions of Hsp12.2 and alphaB-crystallin, designated as n-c-t and N-C-T, respectively. Three of the chimeric sHsps, namely N-c-T, n-c-T, and N-C-t, showed nativelike secondary and quaternary structures as measured by circular dichroism and gel permeation chromatography. Combining the conserved alpha-crystallin domain of Hsp12.2 with the N-terminal and tail regions of alphaB-crystallin (N-c-T) resulted in multimeric complexes, but did not restore chaperonelike activity. Replacing the tail region of Hsp12.2 with that of alphaB-crystallin (n-c-T) did not alter the tetrameric structure and lack of chaperone activity. Similarly, providing alphaB-crystallin with the tail of Hsp12.2 (N-C-t) did not substantially influence the multimeric complex size, but it reduced the chaperoning ability, especially for small substrates. These results suggest that the conserved alpha-crystallin domain of Hsp12.2 is intrinsically unsuitable to confer chaperonelike activity and confirms that the tail region in alphaB-crystallin modulates chaperonelike capacity in a substrate-dependent manner.  相似文献   

8.
The 20 kDa alpha A and alpha B subunits of alpha-crystallin from mammalian eye lenses form large aggregates with an average molecular weight of 800,000. To get insight into the interactions responsible for aggregate formation, we expressed in Escherichia coli the putative N- and C-terminal domains of alpha A-crystallin, as well as the intact alpha A-crystallin chain. The proteins are expressed in a stable form and in relatively high amounts (20-60% of total protein). Recombinant alpha A-crystallin and the C-terminal domain are expressed in a water-soluble form. Recombinant alpha A-crystallin forms aggregates comparable with alpha-crystallin aggregates from calf lenses, whereas the C-terminal domain forms dimers or tetramers. The N-terminal domain is expressed in an initially water-insoluble form. After solubilization, denaturation and reaggregation the N-terminal domain exists in a high molecular weight multimeric form. These observations suggest that the interactions leading to aggregation of alpha A-crystallin subunits are mainly located in the N-terminal half of the chain.  相似文献   

9.
The small heat shock proteins and their role in human disease   总被引:2,自引:0,他引:2  
Sun Y  MacRae TH 《The FEBS journal》2005,272(11):2613-2627
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.  相似文献   

10.
P-pilus biogenesis occurs via the highly conserved chaperone-usher pathway and involves the strict coordination of multiple subunit proteins. All nonadhesin structural P-pilus subunits possess the same topology, consisting of two domains: an incomplete immunoglobulin-like fold (pilin body) and an N-terminal extension. Pilus subunits form interactions with one another through donor strand exchange, occurring at the usher, in which the N-terminal extension of an incoming subunit completes the pilin body of the preceding subunit, allowing the incorporation of the subunit into the pilus fiber. In this study, pilus subunits in which the N-terminal extension was either deleted or swapped with that of another subunit were used to examine the role of each domain of PapF in functions involving donor strand exchange and hierarchical assembly. We found that the N-terminal extension of PapF is required to adapt the PapG adhesin to the tip of the fiber. The pilin body of PapF is required to efficiently initiate assembly of the remainder of the pilus, with the assistance of the N-terminal extension. Thus, distinct functions were assigned to each region of the PapF subunit. In conclusion, all pilin subunits possess the same overall architectural topology; however, each N-terminal extension and pilin body has specific functions in pilus biogenesis.  相似文献   

11.
The lens protein, alpha-crystallin, is a molecular chaperone that prevents the thermal aggregation of other proteins. The C-terminal domain of this protein (homologous to domains present in small heat-shock proteins) is implicated in chaperone function, although the domain itself has been reported to show no chaperone activity. Here, we show that the domain can be excised out of the intact alphaB polypeptide and recovered directly in pure form through the transfer of CNBr digests of whole lens homogenates into urea-containing buffer, followed by dialysis-based refolding of digests under acidic conditions and a single gel-filtration purification step. The folded (beta sheet) domain thus obtained is found to be (a) predominantly trimeric, and to display (b) significant surface hydrophobicity, (c) a marked tendency to undergo degradation, and (d) a tendency to aggregate upon heating, and on exposure to UV light. Thus, the twin 'chaperone' features of multimericity and surface hydrophobicity are clearly seen to be insufficient for this domain to function as a chaperone. Since alpha-crystallin interacts with its substrates through hydrophobic interactions, the hydrophobicity of the excised domain indicates that separation of domains may regulate function; at the same time, the fact is also highlighted that surface hydrophobicity is a liability in a chaperone since heating strengthens hydrophobic interactions and can potentially promote self-aggregation. Thus, it would appear that the role of the N-terminal domain in alpha-crystallin is to facilitate the creation of a porous, hollow structural framework of >/=24 subunits in which solubility is effected through increase in the ratio of exposed surface area to buried volume. Trimers of interacting C-terminal domains anchored to this superstructure, and positioned within its interior, might allow hydrophobic surfaces to remain accessible to substrates without compromising solubility.  相似文献   

12.
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.  相似文献   

13.
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.  相似文献   

14.
Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.  相似文献   

15.
Alpha-crystallin, a major structural protein of the lens can also function as a molecular chaperone by binding to unfolding substrate proteins. We have used a combination of limited proteolysis at low temperature, and mass spectrometry to identify the regions of alpha-crystallin directly involved in binding to the structurally compromised substrate, reduced alpha-lactalbumin. In the presence of trypsin, alpha-crystallin which had been pre-incubated with substrate showed markedly reduced proteolysis at the C-terminus compared with a control, indicating that the bound substrate restricted access of trypsin to R157, the main cleavage site. Chymotrypsin was able to cleave at residues in both the N- and C-terminal domains. In the presence of substrate, alpha-crystallin showed markedly reduced proteolysis at four sites in the N-terminal domain when compared with the control. Minor differences in cleavage were observed within the C-terminal domain suggesting that the N-terminal region of alpha-crystallin contains the major substrate interaction sites.  相似文献   

16.
Protein B23 is a multifunctional nucleolar protein whose cellular location and characteristics strongly suggest that it is a ribosome assembly factor. The protein has nucleic acid binding, ribonuclease, and molecular chaperone activities. To determine the contributions of unique polypeptide segments enriched in certain classes of amino acid residues to the respective activities, several constructs that produced N- and C-terminal deletion mutant proteins were prepared. The C-terminal quarter of the protein was shown to be necessary and sufficient for nucleic acid binding. Basic and aromatic segments at the N- and C-terminal ends, respectively, of the nucleic acid binding region were required for activity. The molecular chaperone activity was contained in the N-terminal half of the molecule, with important contributions from both nonpolar and acidic regions. The chaperone activity also correlated with the ability of the protein to form oligomers. The central portion of the molecule was required for ribonuclease activity and possibly contains the catalytic site; this region overlapped with the chaperone-containing segment of the molecule. The C-terminal, nucleic acid-binding region enhanced the ribonuclease activity but was not essential for it. These data suggest that the three activities reside in mainly separate but partially overlapping segments of the polypeptide chain.  相似文献   

17.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

18.
Hasan A  Smith DL  Smith JB 《Biochemistry》2002,41(52):15876-15882
ATP interaction with lens alpha-crystallins leading to enhanced chaperone activity is not yet well understood. One model for chaperone activity of small heat shock proteins proposes that ATP causes small heat shock proteins to release substrates, which are then renatured by other larger heat shock proteins. A similar role has been proposed for ATP in alpha-crystallin chaperone activity. To evaluate this model, ATP-induced structural changes of native human alpha-crystallin assemblies were determined by hydrogen-deuterium exchange. In these experiments, hydrogen-deuterium exchange, measured by mass spectrometry, gave direct evidence that ATP decreases the accessibility of amide hydrogens in multiple regions of both alphaA and alphaB. The surface encompassed by these regions is much larger than would be shielded by a single ATP, implying that multiple ATP molecules bind to each subunit and/or ATP causes a more compact alpha-crystallin structure. Such a conformational change could release a bound substrate. The regions most affected by ATP are near putative substrate binding regions of alphaA and alphaB and in the C-terminal extension of alphaB. The widespread decrease in hydrogen-deuterium exchange with particularly large decreases near substrate binding regions suggests that ATP releases substrates via both direct displacement and a global conformational change.  相似文献   

19.
In vivo function of the molecular chaperone Hsp90 is ATP-dependent and requires the full-length protein. Our earlier studies predicted a second C-terminal ATP-binding site in Hsp90. By applying direct biochemical approaches, we mapped two ATP-binding sites and unveiled the C-terminal ATP-binding site as the first example of a cryptic chaperone nucleotide-binding site, which is opened by occupancy of the N-terminal site. We identified an N-terminal gamma-phosphate-binding motif in the middle domain of Hsp90 similar to other GHKL family members. This motif is adjacent to the phosphate-binding region of the C-terminal ATP-binding site. Whereas novobiocin disrupts both C- and N-terminal nucleotide binding, we found a selective C-terminal nucleotide competitor, cisplatin, that strengthens the Hsp90-Hsp70 complex leaving the Hsp90-p23 complex intact. Cisplatin may provide a pharmacological tool to dissect C- and N-terminal nucleotide binding of Hsp90. A model is proposed on the interactions of the two nucleotide-binding domains and the charged region of Hsp90.  相似文献   

20.
Heat shock protein 33 (Hsp33) inhibits aggregation of partially denatured proteins during oxidative stress. The chaperone activity of Hsp33 is unique among heat shock proteins because the activity is reversibly regulated by cellular redox status. We report here the crystal structure of the N-terminal region of Hsp33 fragments with constitutive chaperone activity. The structure reveals that the N-terminal portion of Hsp33 forms a tightly associated dimer formed by a domain crossover. A concave groove on the dimeric surface contains an elongated hydrophobic patch that could potentially bind denatured protein substrates. The termini of the subunits are located near the hydrophobic patch, indicating that the cleaved C-terminal domain may shield the hydrophobic patch in an inactive state. Two of the four conserved zinc-coordinating cysteines are in the end of the N-terminal domain, and the other two are in the cleaved C-terminal domain. The structural information and subsequent biochemical characterizations suggest that the redox switch of Hsp33 occurs by a reversible dissociation of the C-terminal regulatory domain through oxidation of zinc-coordinating cysteines and zinc release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号