首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid fibrils in which specific proteins have polymerized into a cross-beta-sheet structure are found in about 20 diseases. In contrast to the close structural similarity of fibrils formed in different amyloid diseases, the structures of the corresponding native proteins differ widely. We show here that peptides as short as 4 residues with the sequences KFFE or KVVE can form amyloid fibrils that are practically identical to fibrils formed in association with disease, as judged by electron microscopy and Congo red staining. In contrast, KLLE or KAAE do not form fibrils. The fibril-forming KFFE and KVVE show partial beta-strand conformation in solution, whereas the non-fibril-forming KLLE and KAAE show random structure only, suggesting that inherent propensity for beta-strand conformation promotes fibril formation. The peptides KFFK or EFFE do not form fibrils on their own but do so in an equimolar mixture. Thus, intermolecular electrostatic interactions, either between charged dipolar peptides or between complementary charges of co-fibrillating peptides favor fibril formation.  相似文献   

2.
Aizawa Y  Sugiura Y  Ueno M  Mori Y  Imoto K  Makino K  Morii T 《Biochemistry》1999,38(13):4008-4017
The basic region peptide derived from the basic leucine zipper protein GCN4 bound specifically to the native GCN4 binding sequences in a dimeric form when the beta-cyclodextrin/adamantane dimerization domain was introduced at the C-terminus of the GCN4 basic region peptide. We describe here how the structure and stability of the dimerization domain affect the cooperative formation of the peptide dimer-DNA complex. The basic region peptides with five different guest molecules were synthesized, and their equilibrium dissociation constants with a peptide possessing beta-cyclodextrin were determined. These values, ranging from 1.3 to 15 microM, were used to estimate the stability of the complexes between the dimers with various guest/cyclodextrin dimerization domains and GCN4 target sequences. An efficient cooperative formation of the dimer complexes at the GCN4 binding sequence was observed when the adamantyl group was replaced with the norbornyl or noradamantyl group, but not with the cyclohexyl group that formed a beta-cyclodextrin complex with a stability that was 1 order of magnitude lower than that of the adamantyl group. Thus, cooperative formation of the stable dimer-DNA complex appeared to be effected by the stability of the dimerization domain. For the peptides that cooperatively formed dimer-DNA complexes, there was no linear correlation between the stability of the inclusion complex and that of the dimer-DNA complex. With the beta-cyclodextrin/adamantane dimerization domain, the basic region peptide dimer preferred to bind to a palindromic 5'-ATGACGTCAT-3' sequence over the sequence lacking the central G.C base pair and that with an additional G.C base pair in the middle. Changing the adamantyl group into a norbornyl group did not alter the preferential binding of the peptide dimers to the palindromic sequence, but slightly affected the selectivity of the dimer for other nonpalindromic sequences. The helical contents of the peptides in the DNA-bound dimer with the adamantyl group were decreased by reducing the stability of the dimer-DNA complex, which was possibly caused by deformation of the helical structure proximal to the dimerization domain.  相似文献   

3.
The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.  相似文献   

4.
Peptide libraries displayed by filamentous bacteriophage have proven a powerful tool for the discovery of novel peptide agonists, antagonists and epitope mimics. Most phage-displayed peptides are fused to the N terminus of either the minor coat protein, pIII, or the major coat protein, pVIII. We report here that peptides containing cysteine residues, displayed as N-terminal fusions to pVIII, can form disulfide-bridged homodimers on the phage coat. Phage clones were randomly selected from libraries containing one or two fixed Cys residues, and surveyed for the presence of peptide-pVIII homodimers by SDS-PAGE analysis that involved pretreatment of the phage with reducing or thiol-modifying agents. For all phage whose recombinant peptide contained a single Cys residue, a significant fraction of the peptide-pVIII molecules were displayed as dimers on the phage coat. The dimeric form was in greater abundance than the monomer in almost all cases in which both forms could be reliably observed. Occasionally, peptides containing two Cys residues also formed dimers. These results indicate that, for a given pVIII-displayed peptide bearing a single Cys residue, a significant fraction of the peptide (>40 %) will dimerize regardless of its sequence; however, sequence constraints probably determine whether all of the peptide will dimerize. Similarly, only occasionally do peptides bearing two Cys residues form intermolecular disulfide bridges instead of intramolecular ones; this indicates that sequence constraints may also determine dimerization versus cyclization. Sucrose-gradient analysis of membranes from cells expressing pVIII fused to a peptide containing a single Cys residue showed that dimeric pVIII is present in the cell prior to its assembly onto phage. A model of the peptide-pVIII homodimer is discussed in light of existing models of the structure and assembly of the phage coat. The unique secondary structures created by the covalent association of peptides on the phage surface suggest a role for homo- and heterodimeric peptide libraries as novel sources of bioactive peptides.  相似文献   

5.
Amyloid fibrils often exhibit polymorphism. Polymorphs are formed when proteins or peptides with identical sequences self-assemble into fibrils containing substantially different arrangements of the β-strands. We used atomistic molecular-dynamics simulation to examine the thermodynamic stability of a amyloid fibrils in different polymorphic forms by performing a systematic investigation of sequence and symmetry space for a series of peptides with a range of physicochemical properties. We show that the stability of fibrils depends on both sequence and the symmetry because these factors determine the availability of favorable interactions between the peptide strands within a sheet and in intersheet packing. By performing a detailed analysis of these interactions as a function of symmetry, we obtained a series of simple design rules that can be used to determine which polymorphs of a given sequence are most likely to form thermodynamically stable fibrils. These rules can potentially be employed to design peptide sequences that aggregate into a preferred polymorphic form for nanotechnological purposes.  相似文献   

6.
We reported previously that stabilized beta-amyloid peptide dimers were derived from mutant amyloid precursor protein with a single cysteine in the ectodomain juxtamembrane position. In vivo studies revealed that two forms of SDS-stable A beta homodimers exist, species ending at A beta 40 and A beta 42. The phenomenon of the transformation of the initially deposited 42-residue beta-amyloid peptide into the amyloid fibrils of Alzheimer's disease plaques remains to be explained in physical terms, i.e. energetically and structurally. We therefore performed spectroscopic analyses revealing that engineered dimeric peptides ending at residue 42 displayed a much more pronounced beta-structural transition than corresponding monomers. Specifically, the single chemically induced dimerization of A beta peptides significantly increased the beta-sheet content by a factor of 2. The C-terminal residues Ile-41 and Ala-42 of dimeric forms further increased the beta-sheet content by roughly one-third. In contrast to A beta 42, the beta-sheet content of the alpha- and gamma-secretase-generated p3 fragments did not necessarily correlate with the tendency to form fibrils, although p3/17-42 had a pronounced thread forming character with fibril lengths of up to 2.5 microM. Electron microscopic images show that forms of p3/17-42 generated smaller granular particles than forms ending at residue 40. We discuss these findings in terms of A beta 1-42 dimers representing paranuclei, which self-aggregate into ribbon-like ordered fibrils by elongation. Based on A beta 42 dimer-specific titers of a polyclonal antiserum we propose that the A beta homodimer represents a nidus for plaque formation and a well defined novel therapeutic target.  相似文献   

7.
Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington’s disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.  相似文献   

8.
Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.  相似文献   

9.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

10.
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.  相似文献   

11.
Novel cationic antimicrobial peptides typified by structures such as KKKKKKAAXAAWAAXAA-NH2, where X = Phe/Trp, and several of their analogues display high activity against a variety of bacteria but exhibit no hemolytic activity even at high dose levels in mammalian erythrocytes. To elucidate their mechanism of action and source of selectivity for bacterial membranes, phospholipid mixtures mimicking the compositions of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol) were challenged with the peptides. We found that peptides readily inserted into bacterial lipid mixtures, although no insertion was detected in model "mammalian" membranes. The depth of peptide insertion into model bacterial membranes was estimated by Trp fluorescence quenching using doxyl groups variably positioned along the phospholipid acyl chains. Peptide antimicrobial activity generally increased with increasing depth of peptide insertion. The overall results, in conjunction with molecular modeling, support an initial electrostatic interaction step in which bacterial membranes attract and bind peptide dimers onto the bacterial surface, followed by the "sinking" of the hydrophobic core segment to a peptide sequence-dependent depth of approximately 2.5-8 A into the membrane, largely parallel to the membrane surface. Antimicrobial activity was likely enhanced by the fact that the peptide sequences contain AXXXA sequence motifs, which promote their dimerization, and possibly higher oligomerization, as assessed by SDS-polyacrylamide gel analysis and fluorescence resonance energy transfer experiments. The high selectivity of these peptides for nonmammalian membranes, combined with their activity toward a wide spectrum of Gram-negative and Gram-positive bacteria and yeast, while retaining water solubility, represent significant advantages of this class of peptides.  相似文献   

12.
Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature‐dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin‐derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin‐derived polypeptide (Val‐Pro‐Gly‐Val‐Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n > 40) is required for coacervation. In the present study, a series of elastin‐derived peptide (Phe‐Pro‐Gly‐Val‐Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin‐derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature‐dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet‐turn‐sheet motif involving a type II β‐turn‐like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin‐derived peptides, but also as base materials for developing various temperature‐sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
LFB1/HNF1 alpha and LFB3/HNF1 beta bind DNA as dimers and form heterodimers together in vivo and in vitro. The dimerization domain has been located in both proteins in the 32 N-terminal residues. In previous papers we have described the conformational stability as determined by CD and the secondary structure by NMR studies of a peptide with the amino acid sequence of the dimerization domain of LFB1/HNF1 alpha. This study presents a more complete characterization of similar synthetic peptides spanning the LFB3/HNF1 beta dimerization domain and the alpha/beta heterodimer. The HNF1 peptides represent an example of structures which cannot be determined by NOE data alone because they are not sufficient to define one unique solution. An approach is presented which combines NMR data, the protein structure database and structural analyses according to known principles of protein structure. On this basis we are able to determine possible solutions and to identify a four helix bundle as the structure most consistent with the experimental evidence.  相似文献   

14.
Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine‐rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His‐tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low‐pH harsh conditions, however, His‐HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid‐hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full‐length His‐HP when incubated with 10–20% 2,2,2‐trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage.  相似文献   

15.
The formation of amyloid fibrils is often encountered in Alzheimer's disease, type II diabetes, and transmissible spongiform encephalopathies. In the last few years, however, mounting evidence has suggested that the soluble oligomers of amyloid-forming peptides are also cytotoxic agents. Understanding the early pathway steps of amyloid self-assembly at atomic detail might therefore be crucial for the development of specific inhibitors to prevent amyloidosis in humans. Using the activation-relaxation technique and a generic energy model, we study in detail the aggregation of a hexamer of KFFE peptide. Our simulations show that a monomer remains disordered, but that six monomers placed randomly in an open box self-associate to adopt, with various orientations, three possible distant low-energy structures. Two of these structures show a double-layer beta-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction, whereas the third one consists of a barrel-like curved single-layer hexamer. Based on these results, we propose a bidirectional growth mode of amyloid fibril, involving alternate lateral and longitudinal growths.  相似文献   

16.
17.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

18.
The formation, relative stability, and possible stoichiometries of two (self-)complementary peptide sequences (B and E) designed to form either a parallel homodimeric (B + B) or an antiparallel heterodimeric (B + E) coiled coil have been investigated. Peptide B shows a characteristic coiled coil pattern in circular dichroism spectra at pH 7.4, whereas peptide E is apparently random coiled under these conditions. The peptides are complementary to each other, with peptide E forming a coiled coil when mixed with peptide B. Molecular dynamics simulations show that combinations of B + B and B + E readily form a dimeric coiled coil, whereas E + E does not fall in line with the experimental data. However, the simulations strongly suggest the preferred orientation of the helices in the homodimeric coiled coil is antiparallel, with interactions at the interface quite different to that of the idealized model. In addition, molecular dynamics simulations suggest equilibrium between dimers, trimers, and tetramers of alpha-helices for peptide B.  相似文献   

19.
The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson''s disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1–104 and 29–140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results presented highlight a substantial role of the relative orientation of the individual monomer in the definition of the fibril higher structural levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号