首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Two experiments were conducted to investigate the effect of carbon dioxide (CO2) gas atmosphere and beta-mercaptoethanol on the development of bovine embryos in an in vitro co-culture system. In Experiment 1, in vitro-matured bovine oocytes were inseminated and then co-cultured with cumulus cells in culture medium (CM; 25 mM HEPES buffered TCM-199 supplemented with 5% superovulated cow serum and 0.5 mM sodium pyruvate). Oocytes matured and fertilized in 2 or 5% CO2 in air exhibited similar cleavage rates, but the proportion of embryos that developed to the blastocyst stage was higher for embryos co-cultured in 2 versus 5% CO2 in air. In Experiment two, 4- to 8-cell embryos produced under the condition of 2% CO2 in air were co-cultured with cumulus cells in CM supplemented with various levels of beta-mercaptoethanol (0, 5, 10, 50 microM). The percentage of embryos that developed to the blastocyst stage in CM with 10 microM beta-mercaptoethanol was higher (P<0.05) than that of embryos co-cultured with 0 or 50 microM beta-mercaptoethanol. These results indicate that cumulus cell co-culture in an atmosphere of 2% CO2 in air has a marked stimulatory effect on in vitro development of bovine embryos and that addition of beta-mercaptoethanol to the co-culture medium 2 d after insemination improved the in vitro development of bovine 4- to 8-cell embryos to the blastocyst stage.  相似文献   

2.
Glucose utilization by sheep embryos was examined in 8-cell (N = 36) and blastocyst (N = 36) stages, by measuring conversion of [5-3H]glucose to 3H2O. Fifty percent glucose utilization occurred at 0.79 +/- 0.69 mM for 8-cell embryos and -0.06 +/- 0.15 mM for blastocysts. Development of 1- and 2-cell sheep embryos (N = 264) was examined under different glucose concentrations (0, 1.5, 3, or 6 mM) and in the presence or absence of 0.33 mM pyruvate and 3.3 mM lactate (PL). Overall, the presence of glucose was detrimental (P less than 0.001) to embryonic development. By contrast, the presence of pyruvate and lactate was beneficial (P less than 0.001) to development. An interaction was observed between the concentration of glucose and presence or absence of PL (P less than 0.05). An optimum level of glucose occurs at 0-3 mM in the presence of PL (P less than 0.1). Development to the blastocyst stage was observed in medium when supplemented with amino acids and albumin alone. Thus, glucose metabolism is not critical for embryonic development, but beneficial at low concentrations. High concentrations can inhibit development, possibly by inhibiting the tricarboxylic acid (TCA) cycle. Sheep embryos may also be using amino acids as an energy source for development.  相似文献   

3.
Glucose inhibits development of hamster 8-cell embryos in vitro   总被引:3,自引:0,他引:3  
Relative preferences of energy substrates (glucose, pyruvate, and lactate) for in vitro development of hamster 8-cell embryos were investigated. Using protein-free modified Tyrode's medium (TLP-PVA) containing 10 mM lactate (L), 0.1 mM pyruvate (P), and amino acids (Phe, Ile, Met and Gln), we found that development of hamster 8-cell embryos to blastocysts was supported better in the absence of glucose than in medium containing (standard) 5 mM glucose (88.1% and 50%, respectively). Addition of even 0.25 mM glucose to the medium significantly inhibited blastocyst formation (54.1%). Medium T-PVA, containing 5 mM glucose as sole energy substrate (without pyruvate, lactate, and amino acids), very poorly supported embryo development (less than or equal to 7.9% blastocysts), but addition of 0.1 mM pyruvate enhanced blastocyst formation (52%). Elimination of pyruvate in TL-PVA medium containing 5 mM glucose and amino acids markedly reduced blastocyst formation by 4-fold (13.5%); the optimal pyruvate concentration was 0.2 mM. However, if the same medium was devoid of glucose, blastocyst formation was high both in the absence (71.1%) and presence (83.3%) of 0.1 mM pyruvate. Similarly, in glucose-free T-PVA medium, addition of either 10 mM lactate or amino acids supported 8-cell embryo development to blastocysts (61.7% and 60.5%, respectively) as opposed to 18.8% and 30.6%, respectively, in the presence of 5 mM glucose. This augmented development in the absence of glucose is suggested to the due to the efficient conversion of lactate to pyruvate and of amino acids to amphibolic intermediates and hence their utilization via the Krebs cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Embryos of certain inbred mouse strains, and their F1 hybrids, are able to develop from the 1-cell to blastocyst stage in simple chemically defined media containing lactate (L), pyruvate (P) and glucose (G). The individual roles of these substrates in supporting complete preimplantation development in vitro was examined with 1-cell F2 embryos from B6CBF1 hybrid mice. Embryos collected between 26 and 27 h post hCG were cultured in medium containing L, P, LP or LPG. After 50 h in culture, the proportions developing to the morula stage were 1%, 83%, 94% and 100%, respectively. In combination, lactate and pyruvate appeared to act synergistically and both the rate and level of development to the morula stage were unaffected by the absence of glucose. After a further 46 h in culture, only the embryos grown in the presence of glucose developed into blastocysts. In LP medium, embryos arrested at the compacted morula stage late on day 3 of development. As culture continued in the absence of glucose, embryos decompacted (approximately 82 h post hCG) and subsequently degenerated. Exposure to medium containing glucose for the first, second or third 24 h period in culture was sufficient to support the morula-to-blastocyst transition. Glucose still supported this transition when embryos were transferred to LPG medium 3 h after the completion of compaction (76 h post hCG), but was ineffective 6 h later (82 h post hCG) once decompaction had commenced. We conclude that lactate and pyruvate together are able to support normal development of 1-cell F2 embryos to the morula stage in vitro, but that glucose is an essential component of the culture medium for development to the blastocyst stage.  相似文献   

5.
Lim JM  Kim JH  Okuda K  Niwa K 《Theriogenology》1994,42(3):421-432
Bovine oocytes matured and fertilized in vitro were cultured in a chemically defined medium (modified Tyrode's solution) without glucose. When different concentrations of NaCl were added to the medium, the proportions of embryos developed to the >/=8-cell, morula and blastocyst stages 96, 144 and 192 h post insemination, respectively, were significantly higher at 89 to 114 mM than 64 to 76 and 126 to 139 mM NaCl. A high proportion (28%) of blastocyst-stage embryos 192 h post insemination was obtained at 89 mM NaCl. When calculated osmolarity in the medium with 64 mM NaCl was varied by adding D-sorbitol, significantly higher proportions of morula-stage embryos were obtained at 265 to 315 mOsm (27 to 38%) than 215 (9%) and 365 (2%) mOsm, but the development to the blastocyst stage was difficult at any osmolarities (215 to 365 mOsm) tested. In the medium with a fixed osmolarity (315 mOsm) but with different concentrations (64 to 114 mM) of NaCl, there were no differences in the proportions (29 to 33%) of morula-stage embryos among different NaCl concentrations. However, significantly higher proportions of embryos developed to the blastocyst stage at 89 to 101 mM (22 to 23%) than 64 to 76 (0 to 9%) and 114 (11%) mM NaCl. When Cl- concentration in the medium with 64 mM NaCl was adjusted by adding choline chloride, significantly higher proportions of embryos developed to the morula stage at 97 to 122 mM (32 to 40%) than 72 (6%) and 147 (2%) mM Cl-, but few embryos developed to the blastocyst stage at any Cl- concentrations (72 to 147 mM) tested. In the medium with 64 or 114 mM NaCl and each with 2 different Na (+)K (+) ratios, there were no differences in the proportions of morula- and blastocyst-stage embryos between different Na+ K+ ratios (31 and 39 at 64 mM NaCl, and 39 and 47 at 114 mM NaCl) at each NaCl concentration. When glucose was added to the medium with 89 mM NaCl 120 h postinsemination, there were no significant differences in the proportions (40 to 48%) of morula-stage embryos 144 h post insemination among different concentrations (0 to 6.95 mM) of glucose. The proportion (33%) of blastocysts 192 h post insemination at 2.78 mM glucose was significantly higher than the values at 0 (22%), 5.56 (19%) and 6.95 (15%) mM but not different compared with the values at 1.39 (23%) and 4.17 (28%) mM. In conclusion, NaCl concentration in a defined medium is one of the most important factors for the development of bovine embryo to the blastocyst stage, but the development of embryos up to the morula stage is also regulated by osmolarity and/or Cl-concentration.  相似文献   

6.
The failure of hamster 2-cell embryos to develop in vitro (2-cell block) was examined with experiments in which concentrations of glucose and phosphate in the culture medium were varied. Embryos were cultured in a protein-free modified Tyrode's solution that normally contains 5.0 mM glucose and 0.35 mM sodium dihydrogen phosphate. In the presence of 0.35 mM phosphate but without glucose, 23% of 2-cell embryos reached the 4-cell stage or further after culture for 1 day and 27% after 2 days. Glucose inhibited embryo development even at 0.1 mM (4% development to greater than or equal to 4-cells after culture for 2 days); there was no dose-related inhibition above this glucose concentration. In a second experiment, phosphate levels were varied in the absence of glucose. Phosphate was highly inhibitory to development, with 97% of 2-cell embryos reaching the 4-cell stage or further after culture for 1 day in the absence of phosphate compared to 9-21% in the presence of 0.1-1.05 mM phosphate. After culture for 2 days, 26% of embryos reached the 8-cell stage or further when phosphate was absent compared to 0% development to 8-cells with 0.1 mM phosphate or higher. In a factorial experiment, phosphate blocked development when glucose was present or absent, whereas glucose did not block embryo development in the absence of phosphate. However, 2-deoxyglucose (a non-metabolizable analogue of glucose) inhibited embryo development in the absence of phosphate. These data show that the in vitro block to development of hamster 2-cell embryos is caused at least in part by glucose and/or phosphate. Deletion of these compounds from the culture medium eliminates the 2-cell block to development in virtually all embryos, and approximately 25-75% of embryos develop to the 8-cell or morula stages in vitro. The observations provide a possible explanation for the 2-cell and 4-cell blocks that occur in conventional culture media: stimulation of glycolysis by glucose and/or phosphate may result in inefficient adenosine triphosphate (ATP) production. The data indicate marked dissimilarities in the regulation of in vitro development of early cleavage stage hamster embryos compared with embryos of inbred mice, since the latter have an inactive glycolytic pathway prior to the 8-cell stage of development and will grow from 1-cell to blastocyst with both phosphate and glucose in the culture medium.  相似文献   

7.
Two experiments were conducted to examine the effect of supplemental glucose (G; 1.5 mM) and/or acetate (A; 0.5 mM) on the development of early sheep embryos to blastocysts when cultured in vitro in glucose-free synthetic oviductal fluid (SOF) + sheep serum or bovine serum albumin (BSA). In Experiment 1, 2- to 4-cell, 8- to 16-cell and >16-cell embryos were cultured in SOF, SOF+G, SOF+A or SOF+G+A. All media were supplemented with 10% sheep serum. In addition, embryos were cultured in either microdrops under polysiloxane oil or in multiwell dishes. Overall, development to the blastocyst stage was 3%, 30% and 68% for 2- to 4-cell, 8- to 16-cell and >16-cell stages, respectively, suggesting that an 8-cell developmental block existed under our culture conditions. Glucose supplementation had little effect on embryo development, and no overall effect was observed from the addition of acetate. In Experiment 2, 8- to 16-cell embryos were cultured in SOF or SOF+G, both supplemented with BSA. Development to the blastocyst stage was 25% and 18%, respectively. The results show that the presence of glucose or acetate did little to enhance embryonic development in our incubation systems. Further work is required to evaluate fully the energy requirements for development of the early sheep embryo.  相似文献   

8.
An ultramicrofluorometric technique was used to analyse the nutrient composition of mouse oviduct fluid. The concentrations of pyruvate, glucose and lactate in the vicinity of the cumulus mass were 0.37, 3.40 and 4.79 mM respectively. In the absence of cumulus cells, the concentration of pyruvate was significantly reduced, to 0.14 mM, while the concentration of glucose was significantly increased to 5.19 mM. Glutamine, which may help to overcome the '2-cell block' in mouse embryos in culture, was present at a concentration of 0.20 mM. A modified medium (MTF) in which the concentration of nutrients was similar to that in mouse oviduct fluid was prepared and its effects on embryo development and metabolism in vitro were compared with that of a conventional embryo culture medium (M16). The percentage of zygotes forming blastocysts in vitro by Day 5 was similar in both media (82% in M16, 79% in MTF). Rates of development, as assessed by cell number, were also comparable. However, the proportion of glucose consumed which was converted to lactate increased dramatically following culture; from 44% in fresh blastocysts, to 73% and 91% in blastocysts derived from 8-cell embryos cultured for 24 h in media MTF and M16 respectively.  相似文献   

9.
This study was conducted to examine the effect of energy substrates in a serum-free culture medium on in vitro development of porcine embryos. Presumptive zygotes derived from in vitro fertilization were cultured in glucose-free North Carolina State University (NCSU)-23 medium with glucose, pyruvate, fructose and lactate added to the culture medium singly or in various combinations. In experiment 1, a higher percentage of embryos cleaved (53-63% vs 10-13%) and developed to the blastocyst stage (18-27% vs 0) after the single addition of glucose (5.6 mM), pyruvate (0.5 mM) or lactate (10 mM) than with no energy substrate addition or the addition only of fructose (5.6 mM). In experiment 2, the addition of pyruvate and lactate resulted in higher blastocyst formation (25%) than other combinations (6-22%), while the addition of glucose and pyruvate significantly inhibited blastocyst formation. Increasing lactate concentration, as a single energy supplement, from 5 to 20 mM significantly improved blastocyst formation (7% vs 14-18%), while no benefit was achieved from increasing pyruvate concentration up to 2 mM (experiment 3). Glucose-free NCSU-23 medium supplemented with 0.5 mM pyruvate and 5 mM lactate significantly improved blastocyst formation (28% vs 17%) compared with NCSU-23 medium supplemented with 5.6 mM glucose (experiment 4). In conclusion, pyruvate and lactate are preferable energy substrates to support in vitro development of porcine embryos cultured in a serum-free NCSU-23 medium.  相似文献   

10.
Experiment 1 compared the development of 2- to 4-cell bovine embryos cultured in synthetic oviductal fluid with 20% fetal calf serum or 3.2% BSA and in the presence of oviductal cells, cumulus cells, or medium alone. More embryos developed in medium with serum, regardless of culture method (P = 0.063). Oviductal cell co-culture resulted in more embryos developing to at least the morula stage (P /= 0.400). Addition of serum to oviductal cell co-culture medium increased the number of excellent or good quality embryos (P = 0.019). Experiment 2 further compared the development of 2-cell or 3- to 4-cell embryos co-cultured with oviductal cell suspensions in serum-supplemented synthetic oviductal fluid or M-199 medium. More 3- to 4-cell than 2-cell embryos developed to at least the morula stage (P < 0.001). More embryos developed to at least the morula stage in synthetic oviductal fluid (P = 0.083). Neither initial embryo cell stage nor medium type influenced the percentage of developing embryos that achieved the blastocyst stage or final morphological quality of embryos (P >/= 0.535).  相似文献   

11.
Lim JM  Rocha A  Hansel W 《Theriogenology》1996,45(6):1081-1089
The objective of this study was to develop a serum-free medium for the co-culture of bovine embryos that would yield a percentage of blastocysts equal to that obtained with fetal bovine serum (FBS)-supplemented medium. Cumulus cell-enclosed oocytes (CEO) matured and inseminated in vitro were cultured in a tissue culture medium (TCM)-199 or in a serum-free medium (bovine embryo culture medium; BECM) until 240 h post insemination. Replacement of 10% (v/v) FBS with either 3 mg crystallized bovine serum albumin (BSA)/ml or 3 mg fatty acid-free BSA/ml in TCM-199 had no effect (P > 0.14) on embryo development to the >or= 2-cell (51 to 60%), >or= 8-cell (24 to 33%), blastocyst (16 to 19%) and hatched-blastocyst (7 to 10%) stages at 48, 96, 192 and 240 h post insemination, respectively. Oocyte-enclosing cumulus cells in BSA-supplemented medium grew in clusters rather than in layers, as was noted in FBS-supplemented medium. When CEO were cultured in fatty acid-free BSA-supplemented media (TCM-199 and BECM), a significantly (P < 0.001) higher percentage of oocytes developed to blastocysts after culture with (22%) or without (18%) a cumulus cell monolayer than after denuding the oocytes (7%). Glucose in concentrations of 0 to 5.56 mM added for periods of 18 and 120 h post-insemination had neither a stimulatory nor a deleterious effect on preimplantation development. In conclusion, a serum-free medium supplemented with BSA can be successfully used in a cumulus cell co-culture system for bovine embryos.  相似文献   

12.
This study was conducted to examine the hypothesis that nitric oxide (NO) affects prehatching development of bovine oocytes fertilized in vitro. In experiment 1, inseminated oocytes were cultured in a cumulus–granulosa cell (CG) coculture system to which 0.008 or 0.04 mM of sodium nitroprusside (SNP), a spontaneous NO releaser, was added at 18 or 60 hr postinsemination. Embryo development was greatly (P < 0.001) inhibited by the addition of SNP, regardless of time of addition or SNP concentration. In experiment 2, eight-cell embryos were cultured singly in a defined medium, to which 0.0016, 0.008, or 0.04 mM of SNP was added. Development to the blastocyst stage was greatly (P < 0.001) decreased after addition of SNP compared with no addition. Higher (P < 0.02) concentration of NO metabolites was found in developmentally arrested embryos than in developing embryos at 144 hr postinsemination (experiment 3). In experiment 4, blastocyst formation of oocytes cocultured with CGs was significantly (P < 0.02) increased after addition of hemoglobin (Hb, 1 μg/ml), an NO scavenger. Prehatching development of oocytes was significantly (P < 0.05) increased after addition of Hb at different time intervals (18, 60, or 144 hr postinsemination) in experiment 5. Embryo development was not enhanced by Hb addition to the culture medium in the absence of CGs (experiment 6). Prehatching development of eight-cell embryos derived from a Hb-containing culture system was not promoted by the further addition of Hb after transfer of the embryos to a defined and CG-free single-embryo culture system (experiment 7). In conclusion, NO, which may be secreted from CGs, has an inhibitory role in prehatching development of bovine oocytes fertilized in vitro, and use of an NO scavenger, Hb, in a coculture system enhances blastocyst formation. Mol. Reprod. Dev. 50:45–53, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Glutamine (GLN) is a metabolic precursor for hexosamine synthesis and its inclusion in culture medium has been reported to improve cumulus expansion. Glutamine and cysteine share the same transport system. Excess external GLN may act as a competitive inhibitor for the uptake of cysteine and stimulate loss of cellular cysteine, interfering this with GSH synthesis. Experiments were designed to evaluate the effect of 1–3 mM GLN during in vitro maturation (IVM) on bovine-cumulus expansion, intracellular GSH levels in both oocytes and cumulus cells, and subsequent embryo development up to blastocyst stage. Also, GSH content was measured in 6- to 8-cell embryos and a possible relationship between cumulus expansion and GSH synthesis was studied. Intact cumulus cell-oocyte complexes were incubated for 24 hr and cumulus expansion was measured by a computerized image-digitizing system either before or after IVM. IVM/IVF bovine oocytes were cultured up to 6- to 8-cell stage embryos for assessment of GSH content or for 8 days up to blastocyst stage for embryo development. The measurement of total GSH content was performed by an enzymatic method in oocytes, cumulus cells and 6- to 8-cell embryos. The maximal expansion was achieved by addition of 2 mM GLN without affecting GSH levels, in both oocytes and cumulus cells. At 3 mM, the degree of cumulus expansion was lower and the GSH levels decreased. The addition of 2 mM GLN improves cleavage and blastocyst rates, whereas no differences were found between 0, 1, and 3 mM GLN. Moreover, the GSH content in 6- to 8-cell embryos was similar at any GLN concentrations. In order to study the relationship between GSH and cumulus expansion: 6-diazo-5-oxo-1-norleucine (DON), an inhibitor of hexosamine synthesis, or buthionine sulfoximide (BSO), an inhibitor of GSH synthesis, either alone or with GLN was added to IVM medium. GSH level was not affected by the presence of DON. However, the degree of cumulus expansion was reduced in the presence of BSO. In conclusion, bovine oocytes matured in the presence of 2 mM GLN improve their capacity for subsequent embryo development. Nevertheless, GSH level was altered when GLN was added to IVM medium at a high concentration with a reduction in the degree of cumulus expansion. This study provides evidence that optimal cumulus expansion in vitro is partially dependent on hexosamine production and intracellular GSH content. Mol. Reprod. Dev. 51:76–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
One-cell CF-1 x B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mM-glutamine and 0.1 mM-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3-4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33.7 total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.  相似文献   

15.
As the pig becomes increasingly used for biomedical research, an effective and efficient in vitro culture system is essential. This study aimed to improve the commonly used porcine embryo culture medium, NCSU23, by altering the energy substrates and adding amino acids, using electrically activated diploid parthenotes from oocytes obtained from the ovaries of prepubertal and adult animals. Morphological development to day 6 and blastocyst cell number were examined. Glucose (5.56 mM) was replaced by pyruvate and lactate (0.2 mM and 5.7 mM, respectively) for either the entire culture period or for the first 48 h only. Blastocyst rates were not different between any of the treatments, and were similar for prepubertal and adult oocytes. When the embryos were cultured with pyruvate and lactate for the first 48 h and then glucose, there was a significant increase in blastocyst cell number compared to glucose only. Blastocysts produced using pyruvate and lactate for the entire time tended to have more cells than those exposed to glucose only and less than those who were cultured in pyruvate and lactate for the first 48 h and then glucose. Nonessential amino acids added for the first 48 h and nonessential and essential amino acids added for the remaining time significantly increased blastocyst cell number only when the embryos were grown in pyruvate and lactate followed by glucose. Blastocyst rates were not different between any of the treatments, and this result was the same when using sow or gilt oocytes. The modified medium was then tested using in vitro matured and fertilized embryos from sow oocytes. Blastocyst rates and cell number were significantly increased in the modified medium compared to those grown in unmodified NCSU23. This shows that altering energy substrates and adding amino acids can increase the quantity and cell number of IVP blastocysts compared with NCSU23.  相似文献   

16.
At least 71% of CF1 x B6SJLF1/J embryos developed from the 1-cell stage to the blastocyst stage in an optimum glutamine concentration of 1 mM, as long as glucose was present after the first 48 h of culture. Blastocysts raised under these conditions had significantly more cells than did blastocysts raised in CZB medium alone (glutamine present, glucose absent). Embryos raised in vivo accumulated 170-200 fmol glutamine/embryo/h at the unfertilized egg and 1-cell stages with a decline to 145 fmol/embryo/h at the 2-cell stage, followed by sharp increases to 400 and 850 fmol/embryo/h at the 8-cell and blastocyst stages. The presence or absence of glucose in the labelling medium had no effect on glutamine uptake by these embryos. Embryos raised in vitro accumulated 2-3 times more glutamine at stages comparable to those of embryos raised in vivo. In all cases in which 1-cell to blastocyst development in vitro was successful, glucose was present in the culture medium and the incremental uptake of glutamine between the 8-cell stage and the blastocyst stage was approximately 2-fold. This was also the increment for in-vivo raised embryos. When glucose was not present after the first 48 h, the 8-cell to blastocyst glutamine increment was not significant, and development into blastocysts was reduced. The results also show that glutamine can be used as an energy source for the generation of CO2 through the TCA cycle by all stages of preimplantation mouse development, whether raised in vivo or in vitro from the 1-cell stage. Two-cell embryos raised in vivo converted as much as 70% of the glutamine uptake into CO2, consistent with an important role for glutamine in the very earliest stages of preimplantation development. Cultured blastocysts appeared to convert less glutamine and the presence of glucose in the culture medium seemed to inhibit this conversion.  相似文献   

17.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

18.
To elucidate the mechanism by which phosphate induces developmental inhibition of rat 2-cell embryos, we examined the mutual effects of glucose and other glycolytic and non-glycolytic sugars, the non-metabolizable glucose analogue, and glycolytic inhibitors on the inhibitory effect of phosphate. In the absence of glucose, 30-49% of embryos treated with 10-500 microM phosphate were able to develop to morula and blastocysts. On the other hand, in the presence of 5 mM glucose, 10 microM phosphate decreased the developmental rate of 2-cell embryos to the 4-cell stage and completely inhibited the development beyond the 4-cell stage. In contrast, glucose showed no influence on development in phosphate-free medium. Similarly to glucose, the other glycolytic sugars fructose (5 mM) and mannose (5 mM) enhanced the inhibitory effect of 10 microM phosphate but had no influence in the absence of phosphate. In contrast, the non-glycolytic sugar and non-metabolizable glucose analogue N-acetylglucosamine and 3-O-methylglucose (3-O-MGlc), respectively, did not enhance the effects of phosphate. 2-Deoxyglucose (2DGlc), another glucose analogue that is non-metabolizable but is converted by hexokinase to 2DGlc 6-phosphate, at concentrations as low as 0.1 mM completely inhibited cell cycle progression of 2-cell embryos cultured in glucose-free (Glc(-)) medium with 10 microM phosphate. In contrast, in the absence of phosphate, 2DGlc at the same concentration allowed 55% of 2-cell embryos to develop to morula and blastocyst stages. Addition of an inhibitor of enolase in glycolysis, sodium fluoride (NaF), at 1 mM to the Glc(-) medium also enhanced the inhibitory effects of 10 microM phosphate, whereas 1 mM NaF in the absence of phosphate showed no inhibitory effects on the development of 2-cell embryos to morula and blastocyst stages. From these results, disturbance of glycolysis is a critical reason for the developmental inhibition caused by phosphate in early rat embryos in culture.  相似文献   

19.
This study was an investigation of metabolism during bovine preimplantation development from the oocyte up to the hatched blastocyst derived in vitro or in vivo. Metabolism was determined by estimating the consumption of radiolabeled glucose, pyruvate, or lactate during a 4-h incubation period in a closed noninvasive system with NaOH as trap for the continuous collection of CO(2). The postincubation medium was analyzed for the presence of lactate. Embryonic metabolism from the matured oocyte to the 12-cell stage was more or less constant, with pyruvate being the preferred substrate. The first marked increase in oxidation of glucose occurred between the 12- and 16-cell stage. Compaction of morula and blastocyst expansion was accompanied by significant increases in oxidation of all three energy substrates. The incorporation of glucose increased steadily 15-fold from the 1-cell to the blastocyst stage. In general, the pattern of metabolism was similar between the embryos derived in vitro and in vivo but with some distinct differences. The most apparent feature of glucose metabolism by in vitro-produced embryos was a 2-fold higher rate of aerobic glycolysis as compared to that in their in vivo counterparts. In vitro-matured oocytes produced measurable amounts of lactate, whereas in vivo-matured oocytes exhibited a significantly lower metabolic activity and did not produce any lactate. When in vivo-collected embryos were preexposed to culture conditions, lactate production increased significantly and at the hatched blastocyst stage matched that of their in vitro counterparts. In vitro-produced embryos up to the 8-cell stage oxidized significantly higher amounts of lactate and had a lower ratio of pyruvate-to-lactate oxidation than the in vivo-obtained embryos. The results of this study show that under our culture conditions, important differences exist at the biochemical level between bovine embryos produced in vitro and those generated in vivo that may well affect the developmental capacity.  相似文献   

20.
The influence of sodium dihydrogen phosphate (Pi) and glucose on the development of hamster 8-cell embryos mediated by pyruvate (P) or amino acids (A) or lactate (L) was investigated using modified Tyrode's medium, TLP-PVA. When pyruvate was tested as the only energy substrate in medium TP-PVA for embryo development, blastocyst formation ranged from 81.3 to 90.9% whether or not the medium contained 0.35 mM Pi or 5 mM glucose; but, when these two compounds were present together, blastocyst formation fell to 51.8%. Similarly, in TA-PVA medium containing four amino acids: Phe, Ile, Met, and Gln), embryo development to blastocyst ranged from 74.1% to 90.4% whether or not the medium contained 0.35 mM Pi or 5 mM glucose; but, when these compounds were present together, blastocyst formation fell to 16.0%. In TL-PVA medium, 10 mM sodium lactate supported embryo development (84.4% blastocysts); the addition of 0.35 mM Pi decreased blastocyst development to 65.6%. However, addition of glucose to Pi-free TL-PVA medium did not decrease blastocyst formation (81.3%); when the medium contained 0.35 mM Pi, glucose curtailed blastocyst development to 7.5%. When glucose and Pi interactions were studied at different concentrations, glucose up to 1 mM was not inhibitory in Pi-free TL-PVA medium (74.3% blastocysts), but 0.25 mM glucose in the presence of 0.35 mM Pi markedly inhibited embryo development (7.7% blastocysts). Phosphate at a relatively high concentration (1 mM) was inhibitory (37.9% blastocysts), even in the absence of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号