首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes.  相似文献   

2.
Slac2-a (synaptotagmin-like protein (Slp) homologue lacking C2 domains-a)/melanophilin is a melanosome-associated protein that links Rab27A on melanosomes with myosin Va, an actin-based motor protein, and formation of the tripartite protein complex (Rab27A.Slac2-a.myosin Va) has been suggested to regulate melanosome transport (Fukuda, M., Kuroda, T. S., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 12432-12436). Here we report the structure of a novel form of Slac2, named Slac2-c, that is homologous to Slac2-a. Slac2-a and Slac2-c exhibit the same overall structure, consisting of a highly conserved N-terminal Slp homology domain (about 50% identity) and a less conserved C-terminal myosin Va-binding domain (about 20% identity). As with other Slac2 members and the Slp family, the Slp homology domain of Slac2-c was found to interact specifically with the GTP-bound form of Rab27A/B both in vitro and in intact cells, and the C-terminal domain of Slac2-c interacted with myosin Va and myosin VIIa. In addition, we discovered that the most C-terminal conserved region of Slac2-a (amino acids 400-590) and Slac2-c (amino acids 670-856), which is not essential for myosin Va binding, directly binds actin and that expression of these regions in PC12 cells and melanoma cells colocalized with actin filaments at the cell periphery, suggesting a novel role of Slac2-a/c in capture of Rab27-containing organelles in the actin-enriched cell periphery.  相似文献   

3.
Melanosomes containing melanin pigments are transported from the cell body of melanocytes to the tips of their dendrites by a combination of microtubule- and actin-dependent machinery. Three proteins, Rab27A, myosin Va, and Slac2-a/melanophilin (a linker protein between Rab27A and myosin Va), are known to be essential for proper actin-based melanosome transport in melanocytes. Although Slac2-a directly interacts with Rab27A and myosin Va via its N-terminal region (amino acids 1 to 146) and the middle region (amino acids 241 to 405), respectively, the functional importance of the putative actin-binding domain of the Slac2-a C terminus (amino acids 401 to 590) in melanosome transport has never been elucidated. In this study we showed that formation of a tripartite protein complex between Rab27A, Slac2-a, and myosin Va alone is insufficient for peripheral distribution of melanosomes in melanocytes and that the C-terminal actin-binding domain of Slac2-a is also required for proper melanosome transport. When a Slac2-a deletion mutant (DeltaABD) or point mutant (KA) that lacks actin-binding ability was expressed in melanocytes, the Slac2-a mutants induced melanosome accumulation in the perinuclear region, possibly by a dominant negative effect, the same as the Rab27A-binding-defective mutant of Slac2-a or the myosin Va-binding-defective mutant. Our findings indicate that Slac2-a organizes actin-based melanosome transport in cooperation with Rab27A, myosin Va, and actin.  相似文献   

4.
Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal melanosomes in pigment epithelium cells.  相似文献   

5.
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.  相似文献   

6.
The synaptotagmin-like protein homologue lacking C2 domains-a (Slac2-a)/melanophilin was recently identified as the "missing link" between the small GTPase Rab27A and the actin-based motor protein myosin Va. Although formation of a tripartite protein complex by three molecules had been shown to be required for proper melanosome distribution in melanocytes (Kuroda, T. S., Ariga, H., and Fukuda, M. (2003) Mol. Cell. Biol. 23, 5245-5255), the regulatory mechanisms of the complex (i.e. assembly and disassembly of the complex) had never been elucidated. In this study, we discovered that Slac2-a and a closely related isoform, Slac2-c/MyRIP, contain multiple PEST-like sequences (potential signals for rapid protein degradation) in the myosin Va- and actin-binding domains at the C terminus. We found that the C-terminal domain of Slac2-a is highly sensitive to low concentrations of proteases, such as trypsin and calpain, in vitro, whereas the N-terminal Rab27A-binding domain is highly resistant to these proteases. We further found that endogenous calpains selectively cleave Slac2-a, but not Rab27A or myosin Va, in melanocytes. A mutant Slac2-a lacking one of the PEST-like sequences located at the interface between the myosin Va- and actin-binding domains (DeltaPEST; amino acids 399-405) is more stable than the wild-type protein, both in vitro and in melanocytes. Expression of the mutant Slac2-a-DeltaPEST with an N-terminal green fluorescence protein tag often induced perinuclear aggregation of melanosomes ( approximately 40% of the transfected cells) compared with the wild-type Slac2-a. Our findings suggest that protein degradation of Slac2-a is an essential process for proper melanosome distribution in melanocytes.  相似文献   

7.
rab27A, which encodes a small GTP-binding protein, was recently identified as a gene in which mutations caused human hemophagocytic syndrome (Griscelli syndrome) and ashen mice, which exhibit defects in melanosome transport as well as in regulated granule exocytosis in cytotoxic T lymphocytes. However, little is known about the molecular mechanism of Rab27A-dependent membrane trafficking or the specific effector molecules of Rab27A. In this study, we discovered that the Slp (synaptotagmin-like protein) homology domain (SHD) of Slp1--3 and Slac2-a/b specifically and directly binds the GTP-bound form of Rab27A both in vitro and in intact cells but not of the other Rabs tested (Rab1, Rab2, Rab3A, Rab4, Rab5A, Rab6A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). Immunocytochemical analysis revealed that Slp2 (or Slp1) colocalized with Rab27A in the melanosomes of melanoma cells. Slp2 and Rab27A were distributed to the periphery of the cells (especially at the dendritic tips) in the wild-type melanoma cells, whereas they accumulated in the perinuclear region in the melanosome transport-defective cells (S91/Cloudman). These results strongly indicated that the SHD of Slp1--3 and Slac2 functions as an in vivo Rab27A binding domain.  相似文献   

8.
Myosin Va is a member of the unconventional class V myosin family, and a mutation in the myosin Va gene causes pigment granule transport defects in human Griscelli syndrome and dilute mice. How myosin Va recognizes its cargo (i.e. melanosomes), however, has remained undetermined over the past decade. In this study, we discovered Slac2-a/melanophilin to be the "missing link" between myosin Va and GTP-Rab27A present in the melanosome. Deletion analysis and site-directed mutagenesis showed that the N-terminal Slp (synaptotagmin-like protein) homology domain of Slac2-a specifically binds Rab27A/B isoforms and that the C-terminal half directly binds the globular tail of myosin Va. The tripartite protein complex (Rab27A.Slac2-a.myosin Va) in melanoma cells was further confirmed by immunoprecipitation. The discovery that myosin Va indirectly recognizes its cargo through Slac2-a, a novel Rab27A/B effector, should shed light on molecular recognition of its specific cargo by class V myosin.  相似文献   

9.
The small GTPase Rab27A is a crucial regulator of actin-based melanosome transport in melanocytes, and functionally defective Rab27A causes human Griscelli syndrome type 2, which is characterized by silvery hair. A GTPase-deficient, constitutively active Rab27A(Q78L) mutant has been shown to act as an inhibitor of melanosome transport and to induce perinuclear aggregation of melanosomes, but the molecular mechanism by which Rab27A(Q78L) inhibits melanosome transport remained to be determined. In this study, we attempted to identify the primary cause of the perinuclear melanosome aggregation induced by Rab27A(Q78L). The results showed that Rab27A(Q78L) is unable to localize on mature melanosomes and that its inhibitory activity on melanosome transport is completely dependent on its binding to the Rab27A effector Slac2-a/melanophilin. When we forcibly expressed Rab27A(Q78L) on mature melanosomes by using a novel melanosome-targeting tag that we developed in this study and named the MST tag, the MST-Rab27A(Q78L) fusion protein behaved in the same manner as wild-type Rab27A. It localized on mature melanosomes without inducing melanosome aggregation and restored normal peripheral melanosome distribution in Rab27A-deficient cells. These findings indicate that the GTPase activity of Rab27A is required for its melanosome localization but is not required for melanosome transport.  相似文献   

10.
Small GTPase Rab27A plays a pivotal role in melanosome transport in melanocytes and in secretion by various secreting cells. Because the GTP- or GDP-locked mutant of Rab27A causes perinuclear aggregation of melanosomes, appropriate GTP-GDP cycling of Rab27A is essential for melanosome transport, and certain guanine nucleotide exchange factors and GTPase-activating proteins (GAPs) of Rab27A must be present in melanocytes. However, no such regulators of Rab27A have ever been identified. In this study we developed novel methods of rapidly screening 40 different TBC (Tre2/Bub2/Cdc16) proteins, putative Rab-GAPs, for Rab27A-GAP by: (i) searching for TBC proteins that induce melanosome aggregation in melanocytes; (ii) trapping GTP-Rab27A with a Rab27A effector domain (i.e. the SHD of Slac2-a) in cultured cells that express both Rab27A and TBC proteins; and (iii) measuring in vitro Rab27A-GAP activity. These methods allowed us to identify EPI64, previously characterized as an EBP50-binding protein that contains an orphan TBC domain, as a specific Rab27A-GAP. We further showed that mutations in the catalytic domain of EPI64 caused complete loss of its ability to induce melanosome aggregation. This is the first report of screening for Rab27A-GAP based on functional interactions, and our screening methods can be applied for other uncharacterized TBC proteins.  相似文献   

11.
Rab27A is required for actin-based melanosome transport in mammalian skin melanocytes through its interaction with a specific effector, Slac2-a/melanophilin. Mutations that disrupt the Rab27A/Slac2-a interaction cause human Griscelli syndrome. The other Rab27 isoform, Rab27B, also binds all of the known effectors of Rab27A. In this study, we determined the crystal structure of the constitutively active form of Rab27B complexed with GTP and the effector domain of Slac2-a. The Rab27B/Slac2-a complex exhibits several intermolecular hydrogen bonds that were not observed in the previously reported Rab3A/rabphilin complex. A Rab27A mutation that disrupts one of the specific hydrogen bonds with Slac2-a resulted in the dramatic reduction of Slac2-a binding activity. Furthermore, we generated a Rab3A mutant that acquires Slac2-a binding ability by transplanting four Rab27-specific residues into Rab3A. These findings provide the structural basis for the exclusive association of Slac2-a with the Rab27 subfamily, whereas rabphilin binds several subfamilies, including Rab3 and Rab27.  相似文献   

12.
Melanosomes are lysosome-related organelles that synthesize, store and transport melanin. In epidermal melanocytes, melanosomes mature and are transferred to surrounding keratinocytes, which is essential for skin and coat colour. Mouse coat colour mutants reveal a critical role for the small GTPase Rab27a, which recruits myosin Va through its effector protein melanophilin/Slac2a. Here we have studied how two different Rab GTPases control two motor proteins during subsequent phases in transport of melanosomes. We show that the small GTPase Rab7 mainly associates with early and intermediate stage melanosomes and Rab27a to intermediate and mature melanosomes. Rab27a is found in an active state on mature melanosomes in the tips of the dendrites. The Rab7-Rab7-interacting lysosomal protein-dynein pathway only controls early and intermediate stage melanosomes because the mature melanosomes lack Rab7 and associate with the actin network through Rab27a recruited MyoVa. Thus two Rab proteins regulate two different motor proteins, thereby controlling complementary phases in melanosome biogenesis: Rab7 controls microtubule-mediated transport of early and Rab27a the subsequent actin-dependent transport of mature melanosomes.  相似文献   

13.
The N-terminal synaptotagmin-like protein (Slp) homology domain (SHD) of the Slp and Slac2 families has recently been identified as a specific Rab27A-binding domain (Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 9212-9218; Fukuda, M., Kuroda, T. S., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 12432-12436). The SHD consists of two conserved alpha-helical regions (SHD1 and SHD2) that are often separated by two zinc finger motifs. However, the structural basis of Rab27A recognition by the SHD (i.e. involvement of each region (SHD1, zinc finger motifs, and SHD2) in Rab27A recognition and critical residue(s) for Rab27A/SHD interaction) had never been elucidated. In this study, systematic deletion analysis and Ala-based site-directed mutagenesis showed that SHD1 of Slac2-a/melanophilin alone is both necessary and sufficient for high affinity specific recognition of the GTP-bound form of Rab27A. By contrast, the zinc finger motifs and SHD2 are not an autonomous Rab27A-binding site and seem to be important for stabilization of the structure of the SHD or higher affinity Rab27A binding. In addition, chimeric analysis of Rab3A and Rab27A showed that the specific sequence of the switch II region of Rab27 isoforms (especially Leu-84, Phe-88, and Asp-91 of Rab27A), which is not conserved in the Rab3 or Rab8 isoforms, is essential for recognition by the Slac2-a SHD. Based on these findings, I propose that SHD1 of the Slp and Slac2 families be referred to as RBD27 (Rab-binding domain specific for Rab27 isoforms).  相似文献   

14.
Regulated secretory pathways are highly developed in multicellular organisms as a means of intercellular communication. Each of these pathways harbors unique store organelles, such as granules in endocrine and exocrine tissues and melanosomes in melanocytes. It has recently been shown that the monomeric GTPase Rab27 subfamily regulates the exocytosis of these cell-specific store organelles. Furthermore, genetic alterations of Rab27a cause Griscelli syndrome in humans that manifests as pigmentary dilution of the skin and the hair and variable immunodeficiency due to defects in the transport of melanosomes in melanocytes and lytic granules in cytotoxic T-lymphocytes. Rab27 acts through organelle-specific effector proteins, such as granuphilin in pancreatic beta cells and melanophilin in melanocytes. The Rab27 and effector complex then interacts with proteins that are essential for membrane transport and fusion, such as syntaxin 1a and Munc18-1 for granuphilin and myosin Va for melanophilin. Genome information suggests that other putative Rab27 effector proteins, tentatively termed as exophilins or Slp/Slac2, are predicted to exist because these proteins share the conserved N-terminal Rab27-binding domain and show Rab27-binding activity in vitro or when overexpressed in cell lines. These findings suggest that the Rab27 subfamily regulates various exocytotic pathways using multiple organelle-specific effector proteins.  相似文献   

15.
16.
Small GTPase Rab functions as a molecular switch that drives membrane trafficking through specific interaction with its effector molecule. Thus, identification of its specific effector domain is crucial to revealing the molecular mechanism that underlies Rab-mediated membrane trafficking. Because of the large numbers of Rab isoforms in higher eukaryotes, however, the effector domains of most of the vertebrate- or mammalian-specific Rabs have yet to be determined. In this study we screened for effector molecules of Rab36, a previously uncharacterized Rab isoform that is largely conserved in vertebrates, and we succeeded in identifying nine Rab36-binding proteins, including RILP (Rab interacting lysosomal protein) family members. Sequence comparison revealed that five of nine Rab36-binding proteins, i.e. RILP, RILP-L1, RILP-L2, and JIP3/4, contain a conserved coiled-coil domain. We identified the coiled-coil domain as a RILP homology domain (RHD) and characterized it as a common Rab36-binding site. Site-directed mutagenesis of the RHD of RILP revealed the different contributions by amino acids in the RHD to binding activity toward Rab7 and Rab36. Expression of RILP in melanocytes, but not expression of its Rab36 binding-deficient mutants, induced perinuclear aggregation of melanosomes, and this effect was clearly attenuated by knockdown of endogenous Rab36 protein. Moreover, knockdown of Rab36 in Rab27A-deficient melanocytes, which normally exhibit perinuclear melanosome aggregation because of increased retrograde melanosome transport activity, caused dispersion of melanosomes from the perinucleus to the cell periphery, but knockdown of Rab7 did not. Our findings indicated that Rab36 mediates retrograde melanosome transport in melanocytes through interaction with RILP.  相似文献   

17.
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a was originally identified as a protein specifically associated with insulin-containing vesicles in pancreatic beta-cells (Wang, J., Takeuchi, T., Yokota, H., and Izumi, T. (1999) J. Biol. Chem. 274, 28542-28548). Previously, we showed that the N-terminal Slp homology domain of Slp4-a interacts with the GTP-bound form of Rab3A, Rab8, and Rab27A both in vitro and in intact cells (Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 9212-9218). How Slp4-a.Rab complex controls regulated secretion, and which Rab isoforms dominantly interact with Slp4-a in vivo, however, have remained unknown. In this study, we showed by immunocytochemistry and subcellular fractionation that three Rabs, Rab3A, Rab8, and Rab27A, and Slp4-a are endogenously expressed in neuroendocrine PC12 cells and localized on dense-core vesicles, and we discovered that the Slp4-a.Rab8 and Slp4-a.Rab27A complexes, but not Slp4-a.Rab3A complexes, are formed on dense-core vesicles in PC12 cells, although the majority of Rab8 is present in the cell body and is free of Slp4-a. We further showed that expression of Rab27A, but not of Rab8, promotes high KCl-dependent secretion of neuropeptide Y (NPY) in PC12 cells, whereas expression of Slp4-a, but not of an Slp4-a mutant incapable of Rab27A binding, inhibits NPY secretion in PC12 cells. In contrast, expression of Slp3-a, but not of Slp3-b lacking an N-terminal Rab27A-binding domain, promotes NPY secretion. These findings suggest that the Slp family controls regulated dense-core vesicle exocytosis via binding to Rab27A.  相似文献   

18.
19.
The Rab27a GTPase regulates diverse processes involving lysosome-related organelles, including melanosome motility in melanocytes, and lytic granule release in cytotoxic T lymphocytes. Toward an understanding of Rab27a function, we searched for proteins that interact with Rab27a(GTP) using the yeast two-hybrid system and identified JFC1/Slp1, a protein of unknown function. JFC1/Slp1 and related proteins, including melanophilin, contain a conserved amino-terminal domain similar to the Rab3a-binding domain of Rabphilin-3. We used several methods to demonstrate that this conserved amino-terminal domain is a Rab27-binding domain. We show that this domain interacts directly, and in a GTP-dependent manner with Rab27a. Furthermore, overexpression of this domain in melanocytes results in perinuclear clustering of melanosomes, suggesting that this region is sufficient for interaction with, and perturbation of function of, Rab27a in a physiological context. Thus, we identified a novel family of Rab27-binding proteins. We also show that melanophilin associates with Rab27a and myosin Va on melanosomes in melanocytes, and present evidence that a domain within the carboxyl-terminal region of melanophilin interacts with the carboxyl-terminal tail of the melanocyte-specific splice isoform of myosin Va. Thus, melanophilin can associate simultaneously with activated Rab27a and myosin Va via distinct regions, and serve as a linker between these proteins.  相似文献   

20.
Rab27a: A key to melanosome transport in human melanocytes   总被引:12,自引:0,他引:12  
Normal pigmentation depends on the uniform distribution of melanin-containing vesicles, the melanosomes, in the epidermis. Griscelli syndrome (GS) is a rare autosomal recessive disease, characterized by an immune deficiency and a partial albinism that has been ascribed to an abnormal melanosome distribution. GS maps to 15q21 and was first associated with mutations in the myosin-V gene. However, it was demonstrated recently that GS can also be caused by a mutation in the Rab27a gene. These observations prompted us to investigate the role of Rab27a in melanosome transport. Using immunofluorescence and immunoelectron microscopy studies, we show that in normal melanocytes Rab27a colocalizes with melanosomes. In melanocytes isolated from a patient with GS, we show an abnormal melanosome distribution and a lack of Rab27a expression. Finally, reexpression of Rab27a in GS melanocytes restored melanosome transport to dendrite tips, leading to a phenotypic reversion of the diseased cells. These results identify Rab27a as a key component of vesicle transport machinery in melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号